cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136513 Number of unit square lattice cells inside half-plane (two adjacent quadrants) of origin centered circle of diameter n.

Original entry on oeis.org

0, 0, 2, 2, 6, 8, 12, 16, 26, 30, 38, 44, 56, 60, 74, 82, 96, 108, 128, 138, 154, 166, 188, 196, 220, 238, 262, 278, 304, 324, 344, 366, 398, 416, 452, 468, 506, 526, 562, 588, 616, 644, 686, 714, 754, 780, 824, 848, 894, 930, 976, 1008, 1056, 1090, 1134, 1170
Offset: 1

Views

Author

Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008

Keywords

Examples

			a(3) = 2 because a circle centered at the origin and of radius 3/2 encloses (-1,1) and (1,1) in the upper half plane.
		

Crossrefs

Alternating merge of A136514 and A136515.

Programs

  • Magma
    A136513:= func< n | n eq 1 select 0 else 2*(&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >;
    [A136513(n): n in [1..100]]; // G. C. Greubel, Jul 27 2023
    
  • Mathematica
    Table[2*Sum[Floor[Sqrt[(n/2)^2 -k^2]], {k,Floor[n/2]}], {n,100}]
  • PARI
    a(n) = 2*sum(k=1, n\2, sqrtint((n/2)^2-k^2)); \\ Michel Marcus, Jul 27 2023
  • SageMath
    def A136513(n): return 2*sum(isqrt((n/2)^2-k^2) for k in range(1,(n//2)+1))
    [A136513(n) for n in range(1,101)] # G. C. Greubel, Jul 27 2023
    

Formula

Lim_{n -> oo} a(n)/(n^2) -> Pi/8.
a(n) = 2 * Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)).
a(n) = 2 * A136483(n).
a(n) = (1/2) * A136485(n).
a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (2 * (1 - x)). - Ilya Gutkovskiy, Nov 24 2021