cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136565 a(n) = sum of the distinct values making up the exponents in the prime-factorization of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 4, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 6, 1, 3, 3, 2, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Leroy Quet, Jan 07 2008

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 13, 192, 2089, 21405, 215730, 2162136, 21636277, 216410510, 2164253043, 21642998932, ... . Apparently, the asymptotic mean of this sequence is 2.164... . - Amiram Eldar, Jun 30 2025

Examples

			120 = 2^3 * 3^1 * 5^1. The exponents of the prime factorization are therefore 3,1,1. The distinct values which equal these exponents are 1 and 3. So a(120) = 1+3 = 4.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Table[Total[Union[Transpose[FactorInteger[n]][[2]]]],{n,2,110}]] (* Harvey P. Dale, Jun 23 2013 *)
  • PARI
    A136565(n) = vecsum(apply(primepi,factor(factorback(apply(e->prime(e),(factor(n)[,2]))))[,1])); \\ Antti Karttunen, Sep 06 2018

Formula

a(n) = A088529(n) = A181591(n) for n: 2 <= n < 24. - Reinhard Zumkeller, Nov 01 2010
a(n) = A066328(A181819(n)). - Antti Karttunen, Sep 06 2018

Extensions

More terms from Diana L. Mecum, Jul 17 2008