A136565 a(n) = sum of the distinct values making up the exponents in the prime-factorization of n.
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 4, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 6, 1, 3, 3, 2, 1, 1, 1, 4, 1
Offset: 1
Keywords
Examples
120 = 2^3 * 3^1 * 5^1. The exponents of the prime factorization are therefore 3,1,1. The distinct values which equal these exponents are 1 and 3. So a(120) = 1+3 = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (terms 1..1000 from Diana Mecum)
- Index entries for sequences computed from exponents in factorization of n.
Programs
-
Mathematica
Join[{0},Table[Total[Union[Transpose[FactorInteger[n]][[2]]]],{n,2,110}]] (* Harvey P. Dale, Jun 23 2013 *)
-
PARI
A136565(n) = vecsum(apply(primepi,factor(factorback(apply(e->prime(e),(factor(n)[,2]))))[,1])); \\ Antti Karttunen, Sep 06 2018
Formula
Extensions
More terms from Diana L. Mecum, Jul 17 2008
Comments