cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A066328 a(n) = sum of indices of distinct prime factors of n; here, index(i-th prime) = i.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 2, 4, 5, 3, 6, 5, 5, 1, 7, 3, 8, 4, 6, 6, 9, 3, 3, 7, 2, 5, 10, 6, 11, 1, 7, 8, 7, 3, 12, 9, 8, 4, 13, 7, 14, 6, 5, 10, 15, 3, 4, 4, 9, 7, 16, 3, 8, 5, 10, 11, 17, 6, 18, 12, 6, 1, 9, 8, 19, 8, 11, 8, 20, 3, 21, 13, 5, 9, 9, 9, 22, 4, 2, 14, 23, 7, 10, 15, 12, 6, 24, 6, 10
Offset: 1

Views

Author

Leroy Quet, Jan 01 2002

Keywords

Comments

Equals row sums of triangle A143542. - Gary W. Adamson, Aug 23 2008
a(n) = the sum of the distinct parts of the partition with Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(75) = 5; indeed, the partition having Heinz number 75 = 3*5*5 is [2,3,3] and 2 + 3 = 5. - Emeric Deutsch, Jun 04 2015

Examples

			a(24) = 1 + 2 = 3 because 24 = 2^3 * 3 = p(1)^3 * p(2), p(k) being the k-th prime.
From _Gus Wiseman_, Mar 09 2019: (Start)
The distinct prime indices of 1..20 and their sums.
   1: () = 0
   2: (1) = 1
   3: (2) = 2
   4: (1) = 1
   5: (3) = 3
   6: (1+2) = 3
   7: (4) = 4
   8: (1) = 1
   9: (2) = 2
  10: (1+3) = 4
  11: (5) = 5
  12: (1+2) = 3
  13: (6) = 6
  14: (1+4) = 5
  15: (2+3) = 5
  16: (1) = 1
  17: (7) = 7
  18: (1+2) = 3
  19: (8) = 8
  20: (1+3) = 4
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(pi(d), d in factorset(n)), n=1..100); # Ridouane Oudra, Aug 19 2019
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_] := (Plus @@ PrimePi[ PrimeFactors[n]]); Table[ f[n], {n, 91}] (* Robert G. Wilson v, May 04 2004 *)
  • PARI
    { for (n=1, 1000, f=factor(n); a=0; for (i=1, matsize(f)[1], a+=primepi(f[i, 1])); write("b066328.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 10 2010
    
  • PARI
    a(n)=my(f=factor(n)[,1]); sum(i=1,#f,primepi(f[i])) \\ Charles R Greathouse IV, May 11 2015
    
  • PARI
    A066328(n) = vecsum(apply(primepi,(factor(n)[,1]))); \\ Antti Karttunen, Sep 06 2018
    
  • Python
    from sympy import primepi, primefactors
    def A066328(n): return sum(map(primepi,primefactors(n))) # Chai Wah Wu, Mar 13 2024

Formula

G.f.: Sum_{k>=1} k*x^prime(k)/(1-x^prime(k)). - Vladeta Jovovic, Aug 11 2004
Additive with a(p^e) = PrimePi(p), where PrimePi(n) = A000720(n).
a(n) = A056239(A007947(n)). - Antti Karttunen, Sep 06 2018
a(n) = Sum_{p|n} A000720(p), where p is a prime. - Ridouane Oudra, Aug 19 2019

A267116 Bitwise-OR of the exponents of primes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 3, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 3, 3, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Examples

			For n = 4 = 2^2, bitwise-OR of 2 alone is 2, thus a(4) = 2.
For n = 6 = 2^1 * 3^1, when we take a bitwise-or of 1 and 1, we get 1, thus a(6) = 1.
For n = 24 = 2^3 * 3^1, bitwise-or of 3 and 1 ("11" and "01" in binary) gives "11", thus a(24) = 3.
For n = 210 = 2^1 * 3^1 * 5^1 * 7^1, bitwise-or of 1, 1, 1 and 1 gives 1, thus a(210) = 1.
For n = 720 = 2^4 * 3^2 * 5^1, bitwise-or of 4, 2 and 1 ("100", "10" and "1" in binary) gives 7 ("111" in binary), thus a(720) = 7.
		

Crossrefs

Cf. A000290 (indices of even numbers).
Cf. A000037 (indices of odd numbers).
Nonunit terms of A005117, A062503, A113849 give the positions of ones, twos, fours respectively in this sequence.
Sequences with similar definitions: A260728, A267113, A267115 (bitwise-AND) and A268387 (bitwise-XOR of exponents).
Sequences with related analysis: A267114, A268374, A268375, A268376.
Sequences A088529, A136565 and A181591 coincide with a(n) for n: 2 <= n < 24.
A003961, A059896 are used to express relationship between terms of this sequence.
Related to A087207 via A225546.

Programs

  • Maple
    read("transforms"):
    A267116 := proc(n)
        local a,e ;
        a := 0 ;
        for e in ifactors(n)[2] do
            a := ORnos(a,op(2,e)) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Feb 16 2021
  • Mathematica
    {0}~Join~Rest@ Array[BitOr @@ Map[Last, FactorInteger@ #] &, 120] (* Michael De Vlieger, Feb 04 2016 *)
  • PARI
    a(n)=my(f = factor(n)); my(b = 0); for (k=1, #f~, b = bitor(b, f[k,2]);); b; \\ Michel Marcus, Feb 05 2016
    
  • PARI
    a(n)=if(n>1, fold(bitor, factor(n)[,2]), 0) \\ Charles R Greathouse IV, Aug 04 2016
    
  • Python
    from functools import reduce
    from operator import or_
    from sympy import factorint
    def A267116(n): return reduce(or_,factorint(n).values(),0) # Chai Wah Wu, Aug 31 2022

Formula

a(1) = 0; for n > 1: a(n) = A067029(n) OR a(A028234(n)). [Here OR stands for bitwise-or, A003986.]
Other identities and observations. For all n >= 1:
a(n) = A007814(n) OR A260728(n) OR A267113(n).
a(n) = A001222(n) - A268374(n).
A268387(n) <= a(n) <= A001222(n).
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k).
a(A003961(n)) = a(n).
a(n^2) = 2*a(n).
a(n) = A087207(A225546(n)).
a(A225546(n)) = A087207(n).
(End)

A088529 Numerator of Bigomega(n)/Omega(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 2, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, 3, 1, 1, 1, 3, 1, 3, 3, 2
Offset: 2

Views

Author

Cino Hilliard, Nov 16 2003

Keywords

Examples

			bigomega(24) / omega(24) = 4/2 = 2, so a(24) = 2.
		

References

  • H. Z. Cao, On the average of exponents, Northeast. Math. J., Vol. 10 (1994), pp. 291-296.

Crossrefs

Cf. A001221, A001222, A070012, A070013, A070014, A088530 (gives the denominator).

Programs

  • Mathematica
    Table[Numerator[PrimeOmega[n]/PrimeNu[n]], {n, 2, 100}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    for(x=2,100,y=bigomega(x)/omega(x);print1(numerator(y)","))
    
  • Python
    from sympy import primefactors, Integer
    def bigomega(n): return 0 if n==1 else bigomega(Integer(n)/primefactors(n)[0]) + 1
    def omega(n): return Integer(len(primefactors(n)))
    def a(n): return (bigomega(n)/omega(n)).numerator
    print([a(n) for n in range(2, 51)]) # Indranil Ghosh, Jul 13 2017

Formula

Let B = number of prime divisors of n with multiplicity, O = number of distinct prime divisors of n. Then a(n) = numerator of B/O.
a(n) = A136565(n) = A181591(n) for n: 2 <= n < 24. - Reinhard Zumkeller, Nov 01 2010
Sum_{k=2..n} a(k)/A088530(k) ~ n + O(n/log(log(n))) (Duncan, 1970). - Amiram Eldar, Oct 14 2022
Sum_{k=2..n} a(k)/A088530(k) = n + c_1 * n/log(log(n)) + c_2 * n/log(log(n))^2 + O(n/log(log(n))^3), where c_1 = A136141 and c_2 = A272531 (Cao, 1994; Finch, 2020). - Amiram Eldar, Dec 15 2022

A280292 a(n) = sopfr(n) - sopf(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 4, 3, 0, 0, 2, 0, 0, 0, 6, 0, 3, 0, 2, 0, 0, 0, 4, 5, 0, 6, 2, 0, 0, 0, 8, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 2, 3, 0, 0, 6, 7, 5, 0, 2, 0, 6, 0, 4, 0, 0, 0, 2, 0, 0, 3, 10, 0, 0, 0, 2, 0, 0, 0, 7, 0, 0, 5, 2, 0, 0, 0, 6, 9, 0, 0, 2, 0, 0, 0, 4, 0, 3, 0, 2, 0, 0, 0, 8, 0, 7, 3, 7, 0, 0, 0, 4, 0
Offset: 1

Views

Author

Michel Marcus, Dec 31 2016

Keywords

Comments

Alladi and Erdős (1977) proved that for all numbers m>=0, m!=1, the sequence of numbers k such that a(k) = m has a positive asymptotic density which is equal to a rational multiple of 1/zeta(2) = 6/Pi^2 (A059956). For example, when m=0, the sequence is the squarefree numbers (A005117), whose density is 6/Pi^2, and when m=2 the sequence is A081770, whose density is 1/Pi^2. - Amiram Eldar, Nov 02 2020
Sum of prime factors minus sum of distinct prime factors. Counting partitions by this statistic (sum minus sum of distinct parts) gives A364916. - Gus Wiseman, Feb 21 2025

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions: Asymptotic Formulae for Sums of Reciprocals of Arithmetical Functions and Related Fields, Amsterdam, Netherlands: North-Holland, 1980. See pp. 164-166.
  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 165.

Crossrefs

A multiplicative version is A003557, firsts A064549 (sorted A001694).
For length instead of sum we have A046660.
For product instead of sum we have A066503, firsts A381076.
Positions of first appearances are A280286 (sorted A381075).
For indices instead of factors we have A380955, firsts A380956 (sorted A380957).
For exponents instead of factors we have A380958, firsts A380989.
A000040 lists the primes, differences A001223.
A001222 counts prime factors (distinct A001221).
A003963 gives product of prime indices, distinct A156061, excess A380986.
A005117 lists squarefree numbers, complement A013929.
A007947 gives squarefree kernel.
A020639 gives least prime factor (index A055396), greatest A061395 (index A006530).
A027746 lists prime factors, distinct A027748.
A112798 lists prime indices (sum A056239), distinct A304038 (sum A066328).

Programs

  • Mathematica
    Array[Total@ # - Total@ Union@ # &@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger@ #] &, 105] (* Michael De Vlieger, Feb 25 2019 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]*f[j, 2]);
    sopf(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]);
    a(n) = sopfr(n) - sopf(n);

Formula

a(n) = A001414(n) - A008472(n).
a(A005117(n)) = 0.
a(n) = A001414(A003557(n)). - Antti Karttunen, Oct 07 2017
Additive with a(1) = 0 and a(p^e) = p*(e-1) for prime p and e > 0. - Werner Schulte, Feb 24 2019
From Amiram Eldar, Nov 02 2020: (Start)
a(n) = a(A057521(n)).
Sum_{n<=x} a(n) ~ x*log(log(x)) + O(x) (Alladi and Erdős, 1977).
Sum_{n<=x, n nonsquarefree} 1/a(n) ~ c*x + O(sqrt(x)*log(x)), where c = Integral_{t=0..1} (F(t)-6/Pi^2)/t dt, and F(t) = Product_{p prime} (1-1/p)*(1-1/(t^p - p)) (De Koninck et al., 1981; Finch, 2018), or, equivalently c = Sum_{k>=2} d(k)/k = 0.1039..., where d(k) = (6/Pi^2)*A338559(k)/A338560(k) is the asymptotic density of the numbers m with a(m) = k (Alladi and Erdős, 1977; Ivić, 2003). (End)

Extensions

More terms from Antti Karttunen, Oct 07 2017

A380955 Sum of prime indices of n (with multiplicity) minus sum of distinct prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 3, 0, 2, 0, 1, 0, 0, 0, 2, 3, 0, 4, 1, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 3, 4, 3, 0, 1, 0, 4, 0, 2, 0, 0, 0, 1, 0, 0, 2, 5, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 3, 6, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 11 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 96 are {1,1,1,1,1,2}, with sum 7, and with distinct prime indices {1,2}, with sum 3, so a(96) = 7 - 3 = 4.
		

Crossrefs

Positions of 0's are A005117, complement A013929.
For length instead of sum we have A046660.
Positions of 1's are A081770.
For factors instead of indices we have A280292, firsts A280286 (sorted A381075).
A multiplicative version is A290106.
Counting partitions by this statistic gives A364916.
Dominates A374248.
Positions of first appearances are A380956, sorted A380957.
For prime multiplicities instead of prime indices we have A380958.
For product instead of sum we have A380986.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[prix[n]]-Total[Union[prix[n]]],{n,100}]

Formula

a(n) = A056239(n) - A066328(n).
Additive: a(m*n) = a(m) + a(n) if gcd(m,n) = 1.

A181591 a(n) = binomial(bigOmega(n),omega(n)), where omega = A001221 and bigOmega = A001222.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 6, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 6, 1, 1, 1, 6, 1, 1, 1, 3, 3, 1, 1, 10, 2, 3, 1, 3, 1, 6, 1, 6, 1, 1, 1, 4, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 10, 1, 1, 3, 3, 1, 1, 1, 10, 4, 1, 1, 4, 1, 1, 1, 6, 1, 4, 1, 3, 1, 1, 1, 15, 1, 3, 3, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 01 2010

Keywords

Crossrefs

Cf. A088529, A136565 (equal for n = 2..23).

Programs

  • Mathematica
    a[n_] := Binomial[PrimeOmega[n], PrimeNu[n]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 29 2013 *)
  • PARI
    a(n) = binomial(bigomega(n), omega(n)); \\ Michel Marcus, Jul 10 2022

Formula

a(n) = A007318(A001222(n),A001221(n)).
a(n) = A088529(n) = A136565(n) for 2 <= n < 24.
a(n) = A136277(A156552(n)). - Antti Karttunen, May 29 2017

A280286 a(n) is the least k such that sopfr(k) - sopf(k) = n.

Original entry on oeis.org

4, 9, 8, 25, 16, 49, 32, 81, 64, 121, 128, 169, 256, 625, 512, 289, 1024, 361, 2048, 1444, 1331, 529, 5324, 2116, 2197, 4232, 8788, 841, 17576, 961, 7569, 3844, 4913, 7688, 19652, 1369, 6859, 5476, 12321, 1681, 34225, 1849, 15129, 7396, 12167, 2209, 46225, 8836, 19881
Offset: 2

Views

Author

Michel Marcus, Dec 31 2016

Keywords

Crossrefs

Cf. A001414 (sopfr), A008472 (sopf), A001248, A280163.
A multiplicative version is A064549 (sorted A001694), firsts of A003557.
For length instead of sum we have A151821.
These are the positions of first appearances in A280292 = A001414 - A008472.
For indices instead of factors we have A380956 (sorted A380957), firsts of A380955.
A multiplicative version for indices is A380987 (sorted A380988), firsts of A290106.
For prime exponents instead of factors we have A380989, firsts of A380958.
The sorted version is A381075.
For product instead of sum see A381076, sorted firsts of A066503.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A020639 gives least prime factor (index A055396), greatest A061395 (index A006530).
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
    q=Table[Total[prifacs[n]]-Total[Union[prifacs[n]]],{n,1000}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[q,k][[1,1]],{k,2,mnrm[q/.(0->1)]}] (* Gus Wiseman, Feb 20 2025 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(j=1, #f~, f[j,1]*f[j,2]);
    sopf(n) = my(f=factor(n)); sum(j=1, #f~, f[j,1]);
    a(n) = {my(k = 2); while (sopfr(k) - sopf(k) != n, k++); k;}

Formula

For p prime, a(p) = p^2 (see A001248).

A381075 Sorted positions of first appearances in A280292 (sum of prime factors minus sum of distinct prime factors).

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 32, 49, 64, 81, 121, 128, 169, 256, 289, 361, 512, 529, 625, 841, 961, 1024, 1331, 1369, 1444, 1681, 1849, 2048, 2116, 2197, 2209, 2809, 3481, 3721, 3844, 4232, 4489, 4913, 5041, 5324, 5329, 5476, 6241, 6859, 6889, 7396, 7569, 7688, 7921
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2025

Keywords

Examples

			The initial terms of A280292 are (0,0,0,2,0,0,0,4,3,0,0,2,0,0,0,6,0,3,0,2,0,0,0,4,5,0,6,2,...), wherein a value appears for the first time at positions 1, 4, 8, 9, 16, 25, ...
		

Crossrefs

For length instead of sum we have A151821.
The unsorted version is A280286, firsts of A280292.
For indices instead of factors we have A380957 (unsorted A380956), firsts of A380955.
A multiplicative version is A380988 (unsorted A380987), firsts of A290106.
For prime multiplicities instead of factors see A380989, firsts of A380958.
For product instead of sum we have A381076, sorted firsts of A066503.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A364916 counts partitions by (sum minus sum of distinct parts).

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
    q=Table[Total[prifacs[n]]-Total[Union[prifacs[n]]],{n,10000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
  • PARI
    f(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]*f[j, 2] - f[j, 1]); \\ A280292
    lista(nn) = my(v=Set(vector(nn, i, f(i))), list=List()); for (i=1, #v, my(k=1); while(f(k) != v[i], k++); listput(list, k)); vecsort(Vec(list)); \\ Michel Marcus, Apr 15 2025

Formula

Sorted positions of first appearances in A001414 - A008472.

A380956 Position of first appearance of n in A380955 (sum of prime indices minus sum of distinct prime indices).

Original entry on oeis.org

1, 4, 8, 16, 27, 64, 81, 256, 243, 529, 729, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also the position of first appearance of n in A374248.

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     8: {1,1,1}
    16: {1,1,1,1}
    27: {2,2,2}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   243: {2,2,2,2,2}
   529: {9,9}
   729: {2,2,2,2,2,2}
   961: {11,11}
  1369: {12,12}
  1681: {13,13}
  1849: {14,14}
  2209: {15,15}
		

Crossrefs

For length instead of sum we have A151821.
For factors instead of indices we have A280286 (sorted A381075), firsts of A280292.
Counting partitions by this statistic gives A364916.
Positions of first appearances in A380955.
The sorted version is A380957.
For product instead of sum we have firsts of A380986.
A multiplicative version is A380987 (sorted A380988), firsts of A290106.
For prime multiplicities instead of prime indices we have A380989, firsts of A380958.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    q=Table[Total[prix[n]]-Total[Union[prix[n]]],{n,1000}];
    Table[Position[q,k][[1,1]],{k,0,mnrm[q+1]-1}]

Formula

After a(12) = 961, this appears to converge to prime(n)^2.
Showing 1-10 of 18 results. Next