cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A381075 Sorted positions of first appearances in A280292 (sum of prime factors minus sum of distinct prime factors).

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 32, 49, 64, 81, 121, 128, 169, 256, 289, 361, 512, 529, 625, 841, 961, 1024, 1331, 1369, 1444, 1681, 1849, 2048, 2116, 2197, 2209, 2809, 3481, 3721, 3844, 4232, 4489, 4913, 5041, 5324, 5329, 5476, 6241, 6859, 6889, 7396, 7569, 7688, 7921
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2025

Keywords

Examples

			The initial terms of A280292 are (0,0,0,2,0,0,0,4,3,0,0,2,0,0,0,6,0,3,0,2,0,0,0,4,5,0,6,2,...), wherein a value appears for the first time at positions 1, 4, 8, 9, 16, 25, ...
		

Crossrefs

For length instead of sum we have A151821.
The unsorted version is A280286, firsts of A280292.
For indices instead of factors we have A380957 (unsorted A380956), firsts of A380955.
A multiplicative version is A380988 (unsorted A380987), firsts of A290106.
For prime multiplicities instead of factors see A380989, firsts of A380958.
For product instead of sum we have A381076, sorted firsts of A066503.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A364916 counts partitions by (sum minus sum of distinct parts).

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
    q=Table[Total[prifacs[n]]-Total[Union[prifacs[n]]],{n,10000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
  • PARI
    f(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]*f[j, 2] - f[j, 1]); \\ A280292
    lista(nn) = my(v=Set(vector(nn, i, f(i))), list=List()); for (i=1, #v, my(k=1); while(f(k) != v[i], k++); listput(list, k)); vecsort(Vec(list)); \\ Michel Marcus, Apr 15 2025

Formula

Sorted positions of first appearances in A001414 - A008472.

A338559 Numerators of the fractions f(n) such that (6/Pi^2)*f(n) is the asymptotic density of the numbers k with A280292(k) = sopfr(k) - sopf(k) = n.

Original entry on oeis.org

1, 0, 1, 1, 1, 17, 5, 17, 61, 559, 269, 5851, 5279, 954913, 1693849, 6394159, 1430687, 33257690117, 393069739, 330504317141, 146861034421, 3447587278559, 13150098373, 17185160160637123, 68404253084009, 219367146802450039, 527431007100952693, 2089195405327981487
Offset: 0

Views

Author

Amiram Eldar, Nov 02 2020

Keywords

Comments

Alladi and Erdős (1977) proved that for all numbers n>=0, n!=1, the sequence of numbers k such that A280292(k) = n has a positive asymptotic density which is equal to a rational multiple of 1/zeta(2) = 6/Pi^2 (A059956).

Examples

			1/1, 0/1, 1/6, 1/12, 1/12, 17/360, 5/72, 17/560, 61/2160, 559/30240, 269/12600, 5851/399168, ...
For n=0, the sequence of numbers k such that A280292(k) = 0 are the squarefree numbers (A005117), whose density is 6/Pi^2. Thus f(0) = a(0)/A338560(0) = 1 and a(0) = 1.
For n=1, there are no numbers k with A280292(k) = 1, thus a(1) = 0.
For n=2, the sequence of numbers k with A280292(k) = 2 is A081770 whose density is 1/Pi^2. Thus f(2) = a(2)/A338560(2) = 1/6 and a(2) = 1.
For n=7, there are A000607(7) = 3 partitions of 7 into prime parts: {{p_i, b_i}} = {{2, 2}, {3, 1}}, {{2, 1}, {5, 1}}, and {{7, 1}}. The powerful numbers associated with these partitions are 2^(2+1)*3^(1+1) = 72, 2^(1+1)*5^(1+1) = 100, and 7^(1+1) = 49. Thus, f(7) = a(7)/A338560(7) = 1/psi(72) + 1/psi(100) + 1/psi(49) = 1/144 + 1/180 + 1/56 = 17/560, and a(7) = 17.
		

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n*Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); delta[ps_] := 1/psi[(Times @@ ps)*(Times @@ Union[ps])]; f[n_] := Total[delta /@ IntegerPartitions[n, Floor[n/2], Select[Range[n], PrimeQ]]]; Numerator @ Array[f, 30, 0]

Formula

Sum_{k>=0} a(k)/A338560(k) = zeta(2) = Pi^2/6 (A013661).
Let {P_j} be the set of partitions of n into prime parts, with j = 1..A000607(n). For a partition P_j = {p_i, b_i} of n = Sum_i b_i * p_i, where p_i are distinct primes, and b_i >= 1 are their multiplicities in the partition, let S(P_j) = Product_i p_i^(b_i + 1) be a powerful number associated with the partition. f(n) = a(n)/A338560(n) = Sum_{j=1..r(n)} 1/psi(S(P_j)), where psi is the Dedekind psi function (A001615).
For any r>0, Sum_{n<=x, n nonsquarefree} 1/A280292(n)^r ~ c(r)*x + O(x^(1-r/2)*log(x)) + O(x^(1/2)*log(x)), where c(r) = (6/Pi^2) * Sum_{k>=2} (a(k)/A338560(k)) * (1/k^r) (Ivić, 2003).

A338560 Denominators of the fractions f(n) such that (6/Pi^2)*f(n) is the asymptotic density of the numbers k with A280292(k) = sopfr(k) - sopf(k) = n.

Original entry on oeis.org

1, 1, 6, 12, 12, 360, 72, 560, 2160, 30240, 12600, 399168, 453600, 86486400, 209563200, 1111968000, 363242880, 5557616064000, 163459296000, 70396470144000, 83364240960000, 1773991047628800, 7508350080000, 6120269114319360000, 86090742017280000, 224409867525043200000
Offset: 0

Views

Author

Amiram Eldar, Nov 02 2020

Keywords

Comments

See A338559 for details.

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n*Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); delta[ps_] := 1/psi[(Times @@ ps)*(Times @@ Union[ps])]; f[n_] := Total[delta /@ IntegerPartitions[n, Floor[n/2], Select[Range[n], PrimeQ]]]; Denominator @ Array[f, 30, 0]

A380955 Sum of prime indices of n (with multiplicity) minus sum of distinct prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 3, 0, 2, 0, 1, 0, 0, 0, 2, 3, 0, 4, 1, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 3, 4, 3, 0, 1, 0, 4, 0, 2, 0, 0, 0, 1, 0, 0, 2, 5, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 3, 6, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 11 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 96 are {1,1,1,1,1,2}, with sum 7, and with distinct prime indices {1,2}, with sum 3, so a(96) = 7 - 3 = 4.
		

Crossrefs

Positions of 0's are A005117, complement A013929.
For length instead of sum we have A046660.
Positions of 1's are A081770.
For factors instead of indices we have A280292, firsts A280286 (sorted A381075).
A multiplicative version is A290106.
Counting partitions by this statistic gives A364916.
Dominates A374248.
Positions of first appearances are A380956, sorted A380957.
For prime multiplicities instead of prime indices we have A380958.
For product instead of sum we have A380986.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[prix[n]]-Total[Union[prix[n]]],{n,100}]

Formula

a(n) = A056239(n) - A066328(n).
Additive: a(m*n) = a(m) + a(n) if gcd(m,n) = 1.

A280286 a(n) is the least k such that sopfr(k) - sopf(k) = n.

Original entry on oeis.org

4, 9, 8, 25, 16, 49, 32, 81, 64, 121, 128, 169, 256, 625, 512, 289, 1024, 361, 2048, 1444, 1331, 529, 5324, 2116, 2197, 4232, 8788, 841, 17576, 961, 7569, 3844, 4913, 7688, 19652, 1369, 6859, 5476, 12321, 1681, 34225, 1849, 15129, 7396, 12167, 2209, 46225, 8836, 19881
Offset: 2

Views

Author

Michel Marcus, Dec 31 2016

Keywords

Crossrefs

Cf. A001414 (sopfr), A008472 (sopf), A001248, A280163.
A multiplicative version is A064549 (sorted A001694), firsts of A003557.
For length instead of sum we have A151821.
These are the positions of first appearances in A280292 = A001414 - A008472.
For indices instead of factors we have A380956 (sorted A380957), firsts of A380955.
A multiplicative version for indices is A380987 (sorted A380988), firsts of A290106.
For prime exponents instead of factors we have A380989, firsts of A380958.
The sorted version is A381075.
For product instead of sum see A381076, sorted firsts of A066503.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A020639 gives least prime factor (index A055396), greatest A061395 (index A006530).
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
    q=Table[Total[prifacs[n]]-Total[Union[prifacs[n]]],{n,1000}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[q,k][[1,1]],{k,2,mnrm[q/.(0->1)]}] (* Gus Wiseman, Feb 20 2025 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(j=1, #f~, f[j,1]*f[j,2]);
    sopf(n) = my(f=factor(n)); sum(j=1, #f~, f[j,1]);
    a(n) = {my(k = 2); while (sopfr(k) - sopf(k) != n, k++); k;}

Formula

For p prime, a(p) = p^2 (see A001248).

A081770 Numbers twice their squarefree kernel (A007947).

Original entry on oeis.org

4, 12, 20, 28, 44, 52, 60, 68, 76, 84, 92, 116, 124, 132, 140, 148, 156, 164, 172, 188, 204, 212, 220, 228, 236, 244, 260, 268, 276, 284, 292, 308, 316, 332, 340, 348, 356, 364, 372, 380, 388, 404, 412, 420, 428, 436, 444, 452, 460, 476, 492, 508, 516, 524
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2003

Keywords

Comments

From Amiram Eldar, Nov 02 2020: (Start)
Numbers k such that A280292(k) = 2.
The asymptotic density of this sequence is 1/Pi^2 (A092742). (End)

Examples

			84=2*2*3*7=2*(2*3*7)=2*rad(84), therefore 84 is a term.
		

Crossrefs

Programs

  • Haskell
    a081770 n = a081770_list !! (n-1)
    a081770_list = filter ((== 1) . a008966 . (`div` 4)) a017113_list
    -- Reinhard Zumkeller, Jul 13 2013
  • Mathematica
    4 * Select[Range[1, 100, 2], SquareFreeQ] (* Amiram Eldar, Nov 02 2020 *)
  • PARI
    is(n)=n%8==4 && issquarefree(n/4) \\ Charles R Greathouse IV, Jul 09 2013
    

Formula

a(n) = 2*A039956(n) = 4*A056911(n).

A380956 Position of first appearance of n in A380955 (sum of prime indices minus sum of distinct prime indices).

Original entry on oeis.org

1, 4, 8, 16, 27, 64, 81, 256, 243, 529, 729, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also the position of first appearance of n in A374248.

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     8: {1,1,1}
    16: {1,1,1,1}
    27: {2,2,2}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   243: {2,2,2,2,2}
   529: {9,9}
   729: {2,2,2,2,2,2}
   961: {11,11}
  1369: {12,12}
  1681: {13,13}
  1849: {14,14}
  2209: {15,15}
		

Crossrefs

For length instead of sum we have A151821.
For factors instead of indices we have A280286 (sorted A381075), firsts of A280292.
Counting partitions by this statistic gives A364916.
Positions of first appearances in A380955.
The sorted version is A380957.
For product instead of sum we have firsts of A380986.
A multiplicative version is A380987 (sorted A380988), firsts of A290106.
For prime multiplicities instead of prime indices we have A380989, firsts of A380958.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    q=Table[Total[prix[n]]-Total[Union[prix[n]]],{n,1000}];
    Table[Position[q,k][[1,1]],{k,0,mnrm[q+1]-1}]

Formula

After a(12) = 961, this appears to converge to prime(n)^2.

A380957 Sorted positions of first appearances in A380955 (sum of prime indices minus sum of distinct prime indices).

Original entry on oeis.org

1, 4, 8, 16, 27, 64, 81, 243, 256, 529, 729, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 1

Views

Author

Gus Wiseman, Feb 13 2025

Keywords

Comments

Also appears to be sorted firsts of A374248.

Crossrefs

For length instead of sum we have A151821.
Counting partitions by this statistic (sum minus sum of distinct parts) gives A364916.
Sorted positions of first appearances in A380955.
The unsorted version is A380956.
For product instead of sum we have sorted firsts of A380986.
The multiplicative version is A380988, unsorted A380987, firsts of A290106.
For prime multiplicities instead of prime indices we have A380989, firsts of A380958.
For factors instead of indices we have A381075, see A280286, A280292.
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    q=Table[Total[prix[n]]-Total[Union[prix[n]]],{n,1000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]

A380986 Product of prime indices of n (with multiplicity) minus product of distinct prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 12, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 12, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 300 are {1,1,2,3,3}, so a(300) = 18 - 6 = 12.
		

Crossrefs

Positions of nonzeros are A038838.
For length instead of product we have A046660.
For factors instead of indices we have A066503, see A007947 (squarefree kernel).
For sum of factors instead of product of indices we have A280292, see A280286, A381075.
For quotient instead of difference we have A290106, for factors A003557.
For sum instead of product we have A380955 (firsts A380956, sorted A380957).
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices, distinct A156061.
A005117 lists the squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@prix[n]-Times@@Union[prix[n]],{n,100}]

Formula

a(n) = A003963(n) - A156061(n).

A380958 Number of prime factors of n (with multiplicity) minus sum of distinct prime exponents of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 13 2025

Keywords

Examples

			The prime factors of 2100 are {2,2,3,5,5,7}, with distinct multiplicities {1,2}, so a(2100) = 6 - (1+2) = 3.
		

Crossrefs

Positions of 0's are A130091, complement A130092.
The RHS (sum of distinct prime exponents) is A136565.
For prime factors instead of exponents see A280292, firsts A280286, sorted A381075.
For prime indices instead of exponents see A380955, firsts A380956, sorted A380957.
Position of first appearance of n is A380989(n).
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A005361 gives product of prime signature.
A055396 gives least prime index, greatest A061395.
A056239 (reverse A296150) adds up prime indices, row sums of A112798, counted by A001222.
A124010 lists prime exponents (signature); see A001222, A001221, A051903, A051904.

Programs

  • Mathematica
    Table[PrimeOmega[n]-Total[Union[Last/@If[n==1,{},FactorInteger[n]]]],{n,100}]

Formula

a(n) = A001222(n) - A136565(n).
Showing 1-10 of 19 results. Next