A324570 Numbers where the sum of distinct prime indices (A066328) is equal to the number of prime factors counted with multiplicity (A001222).
1, 2, 9, 12, 18, 40, 100, 112, 125, 240, 250, 352, 360, 392, 405, 540, 600, 672, 675, 810, 832, 900, 1008, 1125, 1350, 1372, 1500, 1512, 1701, 1875, 1936, 2112, 2176, 2240, 2250, 2268, 2352, 2401, 3168, 3402, 3528, 3750, 3969, 4752, 4802, 4864, 4992, 5292
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 9: {2,2} 12: {1,1,2} 18: {1,2,2} 40: {1,1,1,3} 100: {1,1,3,3} 112: {1,1,1,1,4} 125: {3,3,3} 240: {1,1,1,1,2,3} 250: {1,3,3,3} 352: {1,1,1,1,1,5} 360: {1,1,1,2,2,3} 392: {1,1,1,4,4} 405: {2,2,2,2,3} 540: {1,1,2,2,2,3} 600: {1,1,1,2,3,3} 672: {1,1,1,1,1,2,4}
Crossrefs
Programs
-
Maple
with(numtheory): q:= n-> is(add(pi(p), p=factorset(n))=bigomega(n)): select(q, [$1..5600])[]; # Alois P. Heinz, Mar 07 2019
-
Mathematica
Select[Range[1000],Total[PrimePi/@First/@FactorInteger[#]]==PrimeOmega[#]&]
Comments