cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 52 results. Next

A338331 Numbers whose set of distinct prime indices (A304038) is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions whose set of distinct parts is a singleton or pairwise coprime. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          16: {1,1,1,1}     32: {1,1,1,1,1}
      2: {1}         17: {7}           33: {2,5}
      3: {2}         18: {1,2,2}       34: {1,7}
      4: {1,1}       19: {8}           35: {3,4}
      5: {3}         20: {1,1,3}       36: {1,1,2,2}
      6: {1,2}       22: {1,5}         37: {12}
      7: {4}         23: {9}           38: {1,8}
      8: {1,1,1}     24: {1,1,1,2}     40: {1,1,1,3}
      9: {2,2}       25: {3,3}         41: {13}
     10: {1,3}       26: {1,6}         43: {14}
     11: {5}         27: {2,2,2}       44: {1,1,5}
     12: {1,1,2}     28: {1,1,4}       45: {2,2,3}
     13: {6}         29: {10}          46: {1,9}
     14: {1,4}       30: {1,2,3}       47: {15}
     15: {2,3}       31: {11}          48: {1,1,1,1,2}
		

Crossrefs

A302798 is the squarefree case.
A304709 counts partitions with pairwise coprime distinct parts, with ordered version A337665 and Heinz numbers A304711.
A304711 does not consider singletons relatively prime, except for (1).
A304712 counts the partitions with these Heinz numbers.
A316476 is the version for indivisibility instead of relative primality.
A328867 is the pairwise non-coprime instead of pairwise coprime version.
A337600 counts triples of this type, with ordered version A337602.
A338330 is the complement.
A000961 lists powers of primes.
A051424 counts pairwise coprime or singleton partitions.
A304038 gives the distinct prime indices of each positive integer.
A327516 counts pairwise coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Select[Range[100],#==1||PrimePowerQ[#]||CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]

Formula

Equals A304711 \/ A000961.

A360457 Two times the median of the set of distinct prime indices of n; a(1) = 1.

Original entry on oeis.org

1, 2, 4, 2, 6, 3, 8, 2, 4, 4, 10, 3, 12, 5, 5, 2, 14, 3, 16, 4, 6, 6, 18, 3, 6, 7, 4, 5, 20, 4, 22, 2, 7, 8, 7, 3, 24, 9, 8, 4, 26, 4, 28, 6, 5, 10, 30, 3, 8, 4, 9, 7, 32, 3, 8, 5, 10, 11, 34, 4, 36, 12, 6, 2, 9, 4, 38, 8, 11, 6, 40, 3, 42, 13, 5, 9, 9, 4, 44, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). Since the denominator is always 1 or 2, the median can be represented as an integer by multiplying by 2.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Distinct prime indices are listed by A304038.

Examples

			The prime indices of 65 are {3,6}, with distinct parts {3,6}, with median 9/2, so a(65) = 9.
The prime indices of 900 are {1,1,2,2,3,3}, with distinct parts {1,2,3}, with median 2, so a(900) = 4.
		

Crossrefs

The version for divisors is A063655.
For mean instead of two times median we have A326619/A326620.
The version for all prime indices is A360005.
Positions of first appearances are A360006, sorted A360007.
The version for distinct prime factors is A360458.
The version for all prime factors is A360459.
The version for prime multiplicities is A360460.
Positions of even terms are A360550.
Positions of odd terms are A360551.
The version for 0-prepended differences is A360555.
A112798 lists prime indices, length A001222, sum A056239.
A304038 lists distinct prime indices.
A325347 counts partitions with integer median, complement A307683.
A326567/A326568 gives mean of prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[If[n==1,1,2*Median[PrimePi/@First/@FactorInteger[n]]],{n,100}]

A374251 Irregular triangle read by rows where row n is the run-compression of the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 5, 4, 1, 3, 2, 3, 1, 2, 3, 2, 1, 2, 1, 2, 2, 1, 1, 4, 1, 3, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 6, 5, 1, 4, 2, 4, 1, 3, 3, 2, 1, 3, 1, 2, 3, 1, 2, 4, 2, 3, 1, 2, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The standard compositions and their run-compressions begin:
   0: ()        --> ()
   1: (1)       --> (1)
   2: (2)       --> (2)
   3: (1,1)     --> (1)
   4: (3)       --> (3)
   5: (2,1)     --> (2,1)
   6: (1,2)     --> (1,2)
   7: (1,1,1)   --> (1)
   8: (4)       --> (4)
   9: (3,1)     --> (3,1)
  10: (2,2)     --> (2)
  11: (2,1,1)   --> (2,1)
  12: (1,3)     --> (1,3)
  13: (1,2,1)   --> (1,2,1)
  14: (1,1,2)   --> (1,2)
  15: (1,1,1,1) --> (1)
		

Crossrefs

Last column is A001511.
First column is A065120.
Row-lengths are A124767.
Using prime indices we get A304038, row-sums A066328.
Row n has A334028(n) distinct elements.
Rows are ranked by A373948 (standard order).
Row-sums are A373953.
A003242 counts run-compressed compositions, i.e., anti-runs, ranks A333489.
A007947 (squarefree kernel) represents run-compression of multisets.
A037201 run-compresses first differences of primes, halved A373947.
A066099 lists the parts of compositions in standard order.
A116861 counts partitions by sum of run-compression.
A238279 and A333755 count compositions by number of runs.
A373949 counts compositions by sum of run-compression, opposite A373951.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n]],{n,100}]

A280292 a(n) = sopfr(n) - sopf(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 4, 3, 0, 0, 2, 0, 0, 0, 6, 0, 3, 0, 2, 0, 0, 0, 4, 5, 0, 6, 2, 0, 0, 0, 8, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 2, 3, 0, 0, 6, 7, 5, 0, 2, 0, 6, 0, 4, 0, 0, 0, 2, 0, 0, 3, 10, 0, 0, 0, 2, 0, 0, 0, 7, 0, 0, 5, 2, 0, 0, 0, 6, 9, 0, 0, 2, 0, 0, 0, 4, 0, 3, 0, 2, 0, 0, 0, 8, 0, 7, 3, 7, 0, 0, 0, 4, 0
Offset: 1

Views

Author

Michel Marcus, Dec 31 2016

Keywords

Comments

Alladi and Erdős (1977) proved that for all numbers m>=0, m!=1, the sequence of numbers k such that a(k) = m has a positive asymptotic density which is equal to a rational multiple of 1/zeta(2) = 6/Pi^2 (A059956). For example, when m=0, the sequence is the squarefree numbers (A005117), whose density is 6/Pi^2, and when m=2 the sequence is A081770, whose density is 1/Pi^2. - Amiram Eldar, Nov 02 2020
Sum of prime factors minus sum of distinct prime factors. Counting partitions by this statistic (sum minus sum of distinct parts) gives A364916. - Gus Wiseman, Feb 21 2025

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions: Asymptotic Formulae for Sums of Reciprocals of Arithmetical Functions and Related Fields, Amsterdam, Netherlands: North-Holland, 1980. See pp. 164-166.
  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 165.

Crossrefs

A multiplicative version is A003557, firsts A064549 (sorted A001694).
For length instead of sum we have A046660.
For product instead of sum we have A066503, firsts A381076.
Positions of first appearances are A280286 (sorted A381075).
For indices instead of factors we have A380955, firsts A380956 (sorted A380957).
For exponents instead of factors we have A380958, firsts A380989.
A000040 lists the primes, differences A001223.
A001222 counts prime factors (distinct A001221).
A003963 gives product of prime indices, distinct A156061, excess A380986.
A005117 lists squarefree numbers, complement A013929.
A007947 gives squarefree kernel.
A020639 gives least prime factor (index A055396), greatest A061395 (index A006530).
A027746 lists prime factors, distinct A027748.
A112798 lists prime indices (sum A056239), distinct A304038 (sum A066328).

Programs

  • Mathematica
    Array[Total@ # - Total@ Union@ # &@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger@ #] &, 105] (* Michael De Vlieger, Feb 25 2019 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]*f[j, 2]);
    sopf(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]);
    a(n) = sopfr(n) - sopf(n);

Formula

a(n) = A001414(n) - A008472(n).
a(A005117(n)) = 0.
a(n) = A001414(A003557(n)). - Antti Karttunen, Oct 07 2017
Additive with a(1) = 0 and a(p^e) = p*(e-1) for prime p and e > 0. - Werner Schulte, Feb 24 2019
From Amiram Eldar, Nov 02 2020: (Start)
a(n) = a(A057521(n)).
Sum_{n<=x} a(n) ~ x*log(log(x)) + O(x) (Alladi and Erdős, 1977).
Sum_{n<=x, n nonsquarefree} 1/a(n) ~ c*x + O(sqrt(x)*log(x)), where c = Integral_{t=0..1} (F(t)-6/Pi^2)/t dt, and F(t) = Product_{p prime} (1-1/p)*(1-1/(t^p - p)) (De Koninck et al., 1981; Finch, 2018), or, equivalently c = Sum_{k>=2} d(k)/k = 0.1039..., where d(k) = (6/Pi^2)*A338559(k)/A338560(k) is the asymptotic density of the numbers m with a(m) = k (Alladi and Erdős, 1977; Ivić, 2003). (End)

Extensions

More terms from Antti Karttunen, Oct 07 2017

A375128 Irregular triangle read by rows where row n lists the minima of maximal strictly increasing runs in the weakly increasing prime indices of n.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 4, 1, 1, 1, 2, 2, 1, 5, 1, 1, 6, 1, 2, 1, 1, 1, 1, 7, 1, 2, 8, 1, 1, 2, 1, 9, 1, 1, 1, 3, 3, 1, 2, 2, 2, 1, 1, 10, 1, 11, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 12, 1, 2, 1, 1, 1, 13, 1, 14, 1, 1, 2, 2, 1, 15, 1, 1, 1, 1, 4, 4, 1, 3, 2, 1, 1, 16
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The minima of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			The prime indices of 540 are {1,1,2,2,2,3}, with strictly increasing runs ({1},{1,2},{2},{2,3}), with minima (1,1,2,2), which is row 540.
Triangle begins:
   1:
   2:  1
   3:  2
   4:  1  1
   5:  3
   6:  1
   7:  4
   8:  1  1  1
   9:  2  2
  10:  1
  11:  5
  12:  1  1
  13:  6
  14:  1
  15:  2
  16:  1  1  1  1
		

Crossrefs

Row-minima are A055396.
Row-sums are A374706.
Row-lengths are A375136.
For leaders of constant runs we have A304038, row-sums A066328.
For compositions we have A374683, row-sums of A374684 (length A124768).
A112798 lists prime indices:
- length A001222, distinct A001221
- leader A055396
- sum A056239
- reverse A296150

Programs

  • Mathematica
    Table[If[n==1,{},First/@Split[Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]],Less]],{n,100}]

A380955 Sum of prime indices of n (with multiplicity) minus sum of distinct prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 3, 0, 2, 0, 1, 0, 0, 0, 2, 3, 0, 4, 1, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 3, 4, 3, 0, 1, 0, 4, 0, 2, 0, 0, 0, 1, 0, 0, 2, 5, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 3, 6, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 11 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 96 are {1,1,1,1,1,2}, with sum 7, and with distinct prime indices {1,2}, with sum 3, so a(96) = 7 - 3 = 4.
		

Crossrefs

Positions of 0's are A005117, complement A013929.
For length instead of sum we have A046660.
Positions of 1's are A081770.
For factors instead of indices we have A280292, firsts A280286 (sorted A381075).
A multiplicative version is A290106.
Counting partitions by this statistic gives A364916.
Dominates A374248.
Positions of first appearances are A380956, sorted A380957.
For prime multiplicities instead of prime indices we have A380958.
For product instead of sum we have A380986.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[prix[n]]-Total[Union[prix[n]]],{n,100}]

Formula

a(n) = A056239(n) - A066328(n).
Additive: a(m*n) = a(m) + a(n) if gcd(m,n) = 1.

A360550 Numbers > 1 whose distinct prime indices have integer median.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 30, 31, 32, 34, 37, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 53, 55, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 73, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 97, 100
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Distinct prime indices are listed by A304038.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with distinct parts {1,2,3}, with median 2, so 900 is in the sequence.
The prime indices of 330 are {1,2,3,5},  with distinct parts {1,2,3,5}, with median 5/2, so 330 is not in the sequence.
		

Crossrefs

For mean instead of median we have A326621.
Positions of even terms in A360457.
The complement (without 1) is A360551.
Partitions with these Heinz numbers are counted by A360686.
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.
A112798 lists prime indices, length A001222, sum A056239.
A304038 lists distinct prime indices, length A001221, sum A066328.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A326619/A326620 gives mean of distinct prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Select[Range[2,100],IntegerQ[Median[PrimePi/@First/@FactorInteger[#]]]&]

A367580 Multiset multiplicity kernel (MMK) of n. Product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 4, 7, 2, 3, 4, 11, 6, 13, 4, 9, 2, 17, 6, 19, 10, 9, 4, 23, 6, 5, 4, 3, 14, 29, 8, 31, 2, 9, 4, 25, 4, 37, 4, 9, 10, 41, 8, 43, 22, 15, 4, 47, 6, 7, 10, 9, 26, 53, 6, 25, 14, 9, 4, 59, 18, 61, 4, 21, 2, 25, 8, 67, 34, 9, 8, 71, 6, 73, 4, 15, 38
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2023

Keywords

Comments

As an operation on multisets, this is represented by A367579.

Examples

			90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so a(90) = 12.
		

Crossrefs

Positions of 2's are A000079 without 1.
Positions of 3's are A000244 without 1.
Positions of primes (including 1) are A000961.
Positions of prime(k) are prime powers prime(k)^i, rows of A051128.
Depends only on rootless base A052410, see A007916.
Positions of prime powers are A072774.
Positions of squarefree numbers are A130091.
Agrees with A181819 at positions A367683, counted by A367682.
Rows of A367579 have this rank, sum A367581, max A367583, min A055396.
Positions of first appearances are A367584, sorted A367585.
Positions of powers of 2 are A367586.
Divides n at positions A367685, counted by A367684.
The opposite version (cokernel) is A367859.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives multiset of multiplicities (prime signature), sorted A118914.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,100}]

Formula

a(n^k) = a(n) for all positive integers n and k.
A001221(a(n)) = A071625(n).
A001222(a(n)) = A001221(n).
If n is squarefree, a(n) = A020639(n)^A001222(n).
A056239(a(n)) = A367581(n).

A360460 Two times the median of the unordered prime signature of n; a(1) = 1.

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 2, 6, 4, 2, 2, 3, 2, 2, 2, 8, 2, 3, 2, 3, 2, 2, 2, 4, 4, 2, 6, 3, 2, 2, 2, 10, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 5, 4, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 12, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 3, 2, 2, 2, 5, 8, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). Since the denominator is always 1 or 2, the median can be represented as an integer by multiplying by 2.
A number's unordered prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.

Examples

			The unordered prime signature of 2520 is {1,1,2,3}, with median 3/2, so a(2520) = 3.
		

Crossrefs

The version for divisors is A063655.
For mean instead of two times median we have A088529/A088530.
Prime signature is A124010, unordered A118914.
The version for prime indices is A360005.
The version for distinct prime indices is A360457.
The version for distinct prime factors is A360458.
The version for prime factors is A360459.
Positions of even terms are A360553.
Positions of odd terms are A360554.
The version for 0-prepended differences is A360555.
A112798 lists prime indices, length A001222, sum A056239.
A304038 lists distinct prime indices.
A325347 counts partitions w/ integer median, complement A307683.
A329976 counts partitions with median multiplicity 1.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[If[n==1,1,2*Median[Last/@FactorInteger[n]]],{n,100}]

A367579 Irregular triangle read by rows where row n is the multiset multiplicity kernel (MMK) of the multiset of prime indices of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 1, 5, 1, 2, 6, 1, 1, 2, 2, 1, 7, 1, 2, 8, 1, 3, 2, 2, 1, 1, 9, 1, 2, 3, 1, 1, 2, 1, 4, 10, 1, 1, 1, 11, 1, 2, 2, 1, 1, 3, 3, 1, 1, 12, 1, 1, 2, 2, 1, 3, 13, 1, 1, 1, 14, 1, 5, 2, 3, 1, 1, 15, 1, 2, 4, 1, 3, 2, 2, 1, 6, 16, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2023

Keywords

Comments

Row n = 1 is empty.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}.
Note: I chose the word 'kernel' because, as with A007947 and A304038, MMK(m) is constructed using the same underlying elements as m and has length equal to the number of distinct elements of m. However, it is not necessarily a submultiset of m.

Examples

			The first 45 rows:
     1: {}      16: {1}       31: {11}
     2: {1}     17: {7}       32: {1}
     3: {2}     18: {1,2}     33: {2,2}
     4: {1}     19: {8}       34: {1,1}
     5: {3}     20: {1,3}     35: {3,3}
     6: {1,1}   21: {2,2}     36: {1,1}
     7: {4}     22: {1,1}     37: {12}
     8: {1}     23: {9}       38: {1,1}
     9: {2}     24: {1,2}     39: {2,2}
    10: {1,1}   25: {3}       40: {1,3}
    11: {5}     26: {1,1}     41: {13}
    12: {1,2}   27: {2}       42: {1,1,1}
    13: {6}     28: {1,4}     43: {14}
    14: {1,1}   29: {10}      44: {1,5}
    15: {2,2}   30: {1,1,1}   45: {2,3}
		

Crossrefs

Indices of empty and singleton rows are A000961.
Row lengths are A001221.
Depends only on rootless base A052410, see A007916.
Row minima are A055396.
Rows have A071625 distinct elements.
Indices of constant rows are A072774.
Indices of strict rows are A130091.
Rows have Heinz numbers A367580.
Row sums are A367581.
Row maxima are A367583, opposite A367587.
Index of first row with Heinz number n is A367584.
Sorted row indices of first appearances are A367585.
Indices of rows of the form {1,1,...} are A367586.
Agrees with sorted prime signature at A367683, counted by A367682.
A submultiset of prime indices at A367685, counted by A367684.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 lists prime multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reversed A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A367582 counts partitions by sum of multiset multiplicity kernel.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Table[mmk[PrimePi/@Join@@ConstantArray@@@If[n==1, {},FactorInteger[n]]], {n,100}]

Formula

For all positive integers n and k, row n^k is the same as row n.
Showing 1-10 of 52 results. Next