A136635 Triangle, read by rows, where T(n,k) = C(n,k) * C(2^k*3^(n-k), n) for n>=k>=0.
1, 3, 2, 36, 30, 6, 2925, 2448, 660, 56, 1663740, 1265004, 353430, 42504, 1820, 6774333588, 4368213360, 1114691760, 139915440, 8561520, 201376, 204208594169580, 106458751541142, 23004238451040, 2630276490960
Offset: 0
Examples
Triangle begins: 1; 3, 2; 36, 30, 6; 2925, 2448, 660, 56; 1663740, 1265004, 353430, 42504, 1820; 6774333588, 4368213360, 1114691760, 139915440, 8561520, 201376; 204208594169580, 106458751541142, 23004238451040, 2630276490960, 167150463480, 5562289824, 74974368; ...
Crossrefs
Programs
-
Mathematica
Flatten[Table[Binomial[n,k]Binomial[2^k 3^(n-k),n],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Dec 13 2012 *)
-
PARI
{T(n,k)=binomial(n,k)*binomial(2^k*3^(n-k),n)}
-
PARI
/* Using g.f.: */ {T(n,k)=polcoeff(polcoeff(sum(i=0,n,log(1+3^i*x+2^i*x*y)^i/i!),n,x),k,y)}
Formula
G.f.: A(x,y) = Sum_{n>=0} log(1 + 3^n*x + 2^n*x*y)^n / n!.
Comments