cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A136636 a(n) = n * C(2*3^(n-1), n) for n>=1.

Original entry on oeis.org

2, 30, 2448, 1265004, 4368213360, 106458751541142, 19173684851378353296, 26413015283743616538733008, 285290979402099025600644272168880, 24601033850235942230699563821233785600080
Offset: 1

Views

Author

Vladeta Jovovic and Paul D. Hanna, Jan 15 2008

Keywords

Comments

Equals column 1 of triangle A136635.

Crossrefs

Cf. A136635 (triangle), A014070 (main diagonal), A136393 (column 0), A136637 (row sums), A136638 (antidiagonal sums).

Programs

  • Maple
    A136636:=n->n*binomial(2*3^(n-1), n); seq(A136636(n), n=1..10); # Wesley Ivan Hurt, Apr 29 2014
  • Mathematica
    Table[n*Binomial[2*3^(n - 1), n], {n, 10}] (* Wesley Ivan Hurt, Apr 29 2014 *)
  • PARI
    {a(n)=n*binomial(2*3^(n-1),n)}

Formula

a(n) ~ 2^n * 3^(n*(n-1)) / (n-1)!. - Vaclav Kotesovec, Jul 02 2016

A136637 a(n) = Sum_{k=0..n} C(n, k) * C(2^k*3^(n-k), n).

Original entry on oeis.org

1, 5, 72, 6089, 3326498, 12405917044, 336474648380394, 69883583587428350874, 115099747754889610404191160, 1536533057081060754026861201898620, 168527150638482484315370462123098294514192
Offset: 0

Views

Author

Vladeta Jovovic and Paul D. Hanna, Jan 15 2008

Keywords

Comments

Equals row sums of triangle A136635.

Examples

			More generally,
if Sum_{n>=0} log(1 + (p^n + r*q^n)*x )^n / n! = Sum_{n>=0} b(n)*x^n,
then b(n) = Sum_{k=0..n} C(n,k)*r^(n-k) * C(p^k*q^(n-k), n)
(a result due to _Vladeta Jovovic_, Jan 13 2008).
		

Crossrefs

Cf. A136635 (triangle), A014070 (main diagonal), A136393 (column 0), A136636 (column 1), A136638 (antidiagonal sums).

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*Binomial[2^k*3^(n-k),n], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*binomial(2^k*3^(n-k),n))}
    
  • PARI
    /* Using g.f.: */ {a(n)=polcoeff(sum(i=0,n,log(1+(2^i+3^i)*x)^i/i!),n,x)}

Formula

G.f.: A(x) = Sum_{n>=0} log(1 + (2^n + 3^n)*x )^n / n!.
a(n) ~ 3^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016

A136638 a(n) = Sum_{k=0..[n/2]} C(n-k, k) * C(3^(n-2*k)*2^k, n-k).

Original entry on oeis.org

1, 3, 38, 2955, 1666194, 6775599252, 204212962736426, 47025953519744215608, 84798028785462127288681736, 1219731316443261012339196962784452, 141916030637329352970764084182705691263552
Offset: 0

Views

Author

Vladeta Jovovic and Paul D. Hanna, Jan 15 2008

Keywords

Comments

Equals antidiagonal sums of triangle A136635.

Examples

			More generally, if Sum_{n>=0} log(1 + b*p^n*x + d*q^n*x^2)^n/n! = Sum_{n>=0} a(n)*x^n then a(n) = Sum_{k=0..[n/2]} C(n-k,k)*b^(n-2k)*d^k*C(p^(n-2k)*q^k,n-k).
		

Crossrefs

Cf. A136635 (triangle), A014070 (main diagonal), A136393 (column 0), A136636 (column 1), A136637 (row sums).

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]*Binomial[2^k*3^(n-2*k),n-k], {k, 0, Floor[n/2]}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
  • PARI
    {a(n)=sum(k=0,n\2,binomial(n-k,k)*binomial(3^(n-2*k)*2^k,n-k))}
    
  • PARI
    /* Using g.f.: */ {a(n)=polcoeff(sum(i=0,n,log(1+3^i*x+2^i*x^2)^i/i!),n,x)}

Formula

G.f.: A(x) = Sum_{n>=0} log(1 + 3^n*x + 2^n*x^2)^n / n!.
a(n) ~ 3^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016
Showing 1-3 of 3 results.