A136636
a(n) = n * C(2*3^(n-1), n) for n>=1.
Original entry on oeis.org
2, 30, 2448, 1265004, 4368213360, 106458751541142, 19173684851378353296, 26413015283743616538733008, 285290979402099025600644272168880, 24601033850235942230699563821233785600080
Offset: 1
A136635
Triangle, read by rows, where T(n,k) = C(n,k) * C(2^k*3^(n-k), n) for n>=k>=0.
Original entry on oeis.org
1, 3, 2, 36, 30, 6, 2925, 2448, 660, 56, 1663740, 1265004, 353430, 42504, 1820, 6774333588, 4368213360, 1114691760, 139915440, 8561520, 201376, 204208594169580, 106458751541142, 23004238451040, 2630276490960
Offset: 0
Triangle begins:
1;
3, 2;
36, 30, 6;
2925, 2448, 660, 56;
1663740, 1265004, 353430, 42504, 1820;
6774333588, 4368213360, 1114691760, 139915440, 8561520, 201376;
204208594169580, 106458751541142, 23004238451040, 2630276490960, 167150463480, 5562289824, 74974368; ...
-
Flatten[Table[Binomial[n,k]Binomial[2^k 3^(n-k),n],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Dec 13 2012 *)
-
{T(n,k)=binomial(n,k)*binomial(2^k*3^(n-k),n)}
-
/* Using g.f.: */ {T(n,k)=polcoeff(polcoeff(sum(i=0,n,log(1+3^i*x+2^i*x*y)^i/i!),n,x),k,y)}
A136637
a(n) = Sum_{k=0..n} C(n, k) * C(2^k*3^(n-k), n).
Original entry on oeis.org
1, 5, 72, 6089, 3326498, 12405917044, 336474648380394, 69883583587428350874, 115099747754889610404191160, 1536533057081060754026861201898620, 168527150638482484315370462123098294514192
Offset: 0
More generally,
if Sum_{n>=0} log(1 + (p^n + r*q^n)*x )^n / n! = Sum_{n>=0} b(n)*x^n,
then b(n) = Sum_{k=0..n} C(n,k)*r^(n-k) * C(p^k*q^(n-k), n)
(a result due to _Vladeta Jovovic_, Jan 13 2008).
-
Table[Sum[Binomial[n,k]*Binomial[2^k*3^(n-k),n], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
{a(n)=sum(k=0,n,binomial(n,k)*binomial(2^k*3^(n-k),n))}
-
/* Using g.f.: */ {a(n)=polcoeff(sum(i=0,n,log(1+(2^i+3^i)*x)^i/i!),n,x)}
Showing 1-3 of 3 results.
Comments