A136675 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^3.
1, 7, 197, 1549, 195353, 194353, 66879079, 533875007, 14436577189, 14420574181, 19209787242911, 19197460851911, 42198121495296467, 6025866788581781, 6027847576222613, 48209723660000029, 236907853607882606477
Offset: 1
Examples
The first few fractions are 1, 7/8, 197/216, 1549/1728, 195353/216000, 194353/216000, 66879079/74088000, 533875007/592704000, ... = a(n)/A334582(n). - _Petros Hadjicostas_, May 06 2020
Links
- Robert Israel, Table of n, a(n) for n = 1..768
- Eric Weisstein's World of Mathematics, Harmonic Number.
- Wikipedia, Dirichlet eta function.
Crossrefs
Programs
-
Maple
map(numer,ListTools:-PartialSums([seq((-1)^(k+1)/k^3, k=1..100)])); # Robert Israel, Nov 09 2023
-
Mathematica
(* Program #1 *) Table[Numerator[Sum[(-1)^(k+1)/k^3, {k,1,n}]], {n,1,50}] (* Program #2 *) Numerator[Accumulate[Table[(-1)^(k+1) 1/k^3, {k,50}]]] (* Harvey P. Dale, Feb 12 2013 *)
-
PARI
a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^3)); \\ Michel Marcus, May 07 2020
Comments