A137156 Matrix inverse of triangle A137153(n,k) = C(2^k+n-k-1, n-k), read by rows.
1, -1, 1, 1, -2, 1, -2, 5, -4, 1, 9, -24, 22, -8, 1, -88, 239, -228, 92, -16, 1, 1802, -4920, 4749, -1976, 376, -32, 1, -75598, 206727, -200240, 84086, -16432, 1520, -64, 1, 6421599, -17568408, 17034964, -7173240, 1413084, -133984, 6112, -128, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 1, -2, 1; -2, 5, -4, 1; 9, -24, 22, -8, 1; -88, 239, -228, 92, -16, 1; 1802, -4920, 4749, -1976, 376, -32, 1; -75598, 206727, -200240, 84086, -16432, 1520, -64, 1; 6421599, -17568408, 17034964, -7173240, 1413084, -133984, 6112, -128, 1; ...
Crossrefs
Programs
-
PARI
/* As matrix inverse of A137153: */ {T(n,k) = local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(2^(c-1)+r-c-1,r-c)))); if(n
-
PARI
/* Using the g.f.: */ {T(n,k) = if(n
Formula
G.f. of column k: 1 = Sum_{n>=0} T(n+k,k)*x^n/(1-x)^(2^(n+k)).
Comments