A137153
Triangle, read by rows, where T(n,k) = C(2^k + n-k-1, n-k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 8, 1, 1, 5, 20, 36, 16, 1, 1, 6, 35, 120, 136, 32, 1, 1, 7, 56, 330, 816, 528, 64, 1, 1, 8, 84, 792, 3876, 5984, 2080, 128, 1, 1, 9, 120, 1716, 15504, 52360, 45760, 8256, 256, 1, 1, 10, 165, 3432, 54264, 376992, 766480, 357760, 32896
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 10, 8, 1;
1, 5, 20, 36, 16, 1;
1, 6, 35, 120, 136, 32, 1;
1, 7, 56, 330, 816, 528, 64, 1;
1, 8, 84, 792, 3876, 5984, 2080, 128, 1;
1, 9, 120, 1716, 15504, 52360, 45760, 8256, 256, 1;
1, 10, 165, 3432, 54264, 376992, 766480, 357760, 32896, 512, 1;
...
Cf.
A092056 (same with reflected rows).
-
Table[Binomial[2^k+n-k-1,n-k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 06 2017 *)
-
{T(n,k)=binomial(2^k+n-k-1,n-k)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
{T(n, k) = polcoeff(1/(1-x+x*O(x^n))^(2^k), n-k)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A137157
G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1+x)^(2*2^n).
Original entry on oeis.org
1, 2, 5, 24, 239, 4920, 206727, 17568408, 3003763243, 1030272816360, 707851744149198, 973425618916674288, 2678332881795756783639, 14741522294008025924154864, 162290544340043699103996962253, 3573515596966915773419766367302288, 157376160486791180710467411977740266927
Offset: 0
A137158
G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1+x)^(4*2^n).
Original entry on oeis.org
1, 4, 22, 228, 4749, 200240, 17034964, 2913479848, 999402129243, 686662003846640, 944294243796543974, 2598186366278914473948, 14300408328085246335179009, 157434326611214704329370130880
Offset: 0
A137159
G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1+x)^(8*2^n).
Original entry on oeis.org
1, 8, 92, 1976, 84086, 7173240, 1227862380, 421296930984, 289484024512093, 398106386971472608, 1095381029276651137560, 6028986377761538637043792, 66373632185586959347740452492, 1461497816340787260620205149915824
Offset: 0
A137160
G.f.: 1 = Sum_{n>=0} a(n)*x^n*(1-x)/(1+x)^(2^n).
Original entry on oeis.org
1, 2, 4, 12, 64, 664, 13856, 584668, 49751520, 8509625760, 2919099754336, 2005648412219832, 2758163973596156000, 7588978611071894509464, 41769719229784446295570112, 459846172005153447271276789620
Offset: 0
A137154
a(n) = Sum_{k=0..n} binomial(2^k + n-k-1, n-k); equals the row sums of triangle A137153.
Original entry on oeis.org
1, 2, 4, 9, 24, 79, 331, 1803, 12954, 123983, 1592513, 27604172, 648528166, 20722205191, 903019659239, 53792176322629, 4388683843024734, 491232972054490915, 75545748143323475653, 15984344095578889888206
Offset: 0
-
Table[Sum[Binomial[2^(n-k) + k - 1, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 23 2021 *)
-
a(n)=sum(k=0,n,binomial(2^k+n-k-1,n-k))
-
{a(n)=local(A=sum(k=0,n,x^k/(1-x+x*O(x^n))^(2^k)));polcoeff(A,n)} \\ Paul D. Hanna, Sep 15 2009
Showing 1-6 of 6 results.
Comments