cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137166 Sequence equals its 4th differences shifted by one index.

Original entry on oeis.org

1, 3, 7, 15, 32, 70, 156, 349, 778, 1728, 3833, 8505, 18884, 41943, 93160, 206897, 459459, 1020311, 2265815, 5031792, 11174374, 24815508, 55108933, 122382762, 271780616, 603555049, 1340341377, 2976555532, 6610168495, 14679492624
Offset: 0

Views

Author

Keywords

Comments

Binomial transform yields A079398 without the initial (0,1,1,1). - R. J. Mathar, Apr 09 2008

Crossrefs

Cf. A079398.

Programs

  • Magma
    [n le 4 select 2^n-1 else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 15 2013
    
  • Mathematica
    s = ""; a = 0; b = 1; c = 1; d = 1; For[i = 0, i < 23, a = a + b; s = s <> ToString[a] <> ","; b = b + c; c = c + d; d = d + a; i++ ]; Print[s]
    LinearRecurrence[{4, -6, 5, -1}, {1, 3, 7, 15}, 40] (* Vincenzo Librandi, Jun 15 2013 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,5,-6,4]^n*[1;3;7;15])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(n) = 4*a(n-1)-6*a(n-2)+5*a(n-3)-a(n-4). - R. J. Mathar, Apr 09 2008
G.f.: (x^2 - x + 1) / (x^4 - 5*x^3 + 6*x^2 - 4*x + 1). - Alexander R. Povolotsky, Apr 08 2008

Extensions

Edited by R. J. Mathar, Apr 09 2008
Edited by Bruno Berselli, Apr 07 2011