A137166 Sequence equals its 4th differences shifted by one index.
1, 3, 7, 15, 32, 70, 156, 349, 778, 1728, 3833, 8505, 18884, 41943, 93160, 206897, 459459, 1020311, 2265815, 5031792, 11174374, 24815508, 55108933, 122382762, 271780616, 603555049, 1340341377, 2976555532, 6610168495, 14679492624
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,5,-1).
Crossrefs
Cf. A079398.
Programs
-
Magma
[n le 4 select 2^n-1 else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 15 2013
-
Mathematica
s = ""; a = 0; b = 1; c = 1; d = 1; For[i = 0, i < 23, a = a + b; s = s <> ToString[a] <> ","; b = b + c; c = c + d; d = d + a; i++ ]; Print[s] LinearRecurrence[{4, -6, 5, -1}, {1, 3, 7, 15}, 40] (* Vincenzo Librandi, Jun 15 2013 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,5,-6,4]^n*[1;3;7;15])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
Formula
a(n) = 4*a(n-1)-6*a(n-2)+5*a(n-3)-a(n-4). - R. J. Mathar, Apr 09 2008
G.f.: (x^2 - x + 1) / (x^4 - 5*x^3 + 6*x^2 - 4*x + 1). - Alexander R. Povolotsky, Apr 08 2008
Extensions
Edited by R. J. Mathar, Apr 09 2008
Edited by Bruno Berselli, Apr 07 2011
Comments