cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137221 a(n) = 5*a(n-1) - 9*a(n-2) + 8*a(n-3) - 4*a(n-4), with a(0)=0, a(1)=0, a(2)=0, a(3)=1.

Original entry on oeis.org

0, 0, 0, 1, 5, 16, 43, 107, 256, 597, 1365, 3072, 6827, 15019, 32768, 70997, 152917, 327680, 699051, 1485483, 3145728, 6640981, 13981013, 29360128, 61516459, 128625323, 268435456, 559240533, 1163220309, 2415919104, 5010795179
Offset: 0

Views

Author

Paul Curtz, Mar 07 2008

Keywords

Crossrefs

Same recurrence as in A100335 (essentially first differences of this sequence).

Programs

  • Magma
    [n le 4 select Floor((n-1)/3) else 5*Self(n-1) -9*Self(n-2) +8*Self(n-3) -4*Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 05 2022
    
  • Mathematica
    Table[(1/3)*(2^(n-1)*(n-2) + ChebyshevU[n, 1/2]), {n, 0, 40}] (* G. C. Greubel, Jan 05 2022 *)
    LinearRecurrence[{5,-9,8,-4},{0,0,0,1},40] (* Harvey P. Dale, Apr 30 2023 *)
  • Sage
    [(1/3)*(2^(n-1)*(n-2) + chebyshev_U(n, 1/2)) for n in (0..40)] # G. C. Greubel, Jan 05 2022

Formula

Binomial transform of A002264; a(n+1) - 2*a(n) = A024495.
From R. J. Mathar, Mar 17 2008: (Start)
O.g.f.: x^3/((1-x+x^2)(1-2*x)^2).
a(n) = ( -3*2^n + A001787(n+1) + 2*A010892(n) )/6. (End)
a(n) = (1/3)*(2^(n-1)*(n-2) + ChebyshevU(n, 1/2)). - G. C. Greubel, Jan 05 2022

Extensions

More terms from R. J. Mathar, Mar 17 2008