cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002264 Nonnegative integers repeated 3 times.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25
Offset: 0

Views

Author

Keywords

Comments

Complement of A010872, since A010872(n) + 3*a(n) = n. - Hieronymus Fischer, Jun 01 2007
Chvátal proved that, given an arbitrary n-gon, there exist a(n) points such that all points in the interior are visible from at least one of those points; further, for all n >= 3, there exists an n-gon which cannot be covered in this fashion with fewer than a(n) points. This is known as the "art gallery problem". - Charles R Greathouse IV, Aug 29 2012
The inverse binomial transform is 0, 0, 0, 1, -3, 6, -9, 9, 0, -27, 81, -162, 243, -243, 0, 729,.. (see A000748). - R. J. Mathar, Feb 25 2023

Crossrefs

Partial sums give A130518.
Cf. A004523 interlaced with A004396.
Apart from the zeros, this is column 3 of A235791.

Programs

  • Haskell
    a002264 n = a002264_list !! n
    a002264_list = 0 : 0 : 0 : map (+ 1) a002264_list
    -- Reinhard Zumkeller, Nov 06 2012, Apr 16 2012
    
  • Magma
    [Floor(n/3): n in [0..100]]; // Vincenzo Librandi, Apr 29 2015
    
  • Magma
    &cat [[n,n,n]: n in [0..30]]; // Bruno Berselli, Apr 29 2015
  • Maple
    seq(i$3,i=0..100); # Robert Israel, Aug 04 2014
  • Mathematica
    Flatten[Table[{n, n, n}, {n, 0, 25}]] (* Harvey P. Dale, Jun 09 2013 *)
    Floor[Range[0, 20]/3] (* Eric W. Weisstein, Aug 12 2023 *)
    Table[Floor[n/3], {n, 0, 20}] (* Eric W. Weisstein, Aug 12 2023 *)
    Table[(n - Cos[2 (n - 2) Pi/3] + Sin[2 (n - 2) Pi/3]/Sqrt[3] - 1)/3, {n, 0, 20}] (* Eric W. Weisstein, Aug 12 2023 *)
    Table[(n - ChebyshevU[n - 2, -1/2] - 1)/3, {n, 0, 20}] (* Eric W. Weisstein, Aug 12 2023 *)
    LinearRecurrence[{1, 0, 1, -1}, {0, 0, 0, 1}, 20] (* Eric W. Weisstein, Aug 12 2023 *)
    CoefficientList[Series[x^3/((-1 + x)^2 (1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 12 2023 *)
  • PARI
    a(n)=n\3  /* Jaume Oliver Lafont, Mar 25 2009 */
    
  • PARI
    v=[0,0];for(n=2,50,v=concat(v,n-2-v[#v]-v[#v-1]));v \\ Derek Orr, Apr 28 2015
    
  • Sage
    [floor(n/3) for n in range(0,79)] # Zerinvary Lajos, Dec 01 2009
    

Formula

a(n) = floor(n/3).
a(n) = (3*n-3-sqrt(3)*(1-2*cos(2*Pi*(n-1)/3))*sin(2*Pi*(n-1)/3))/9. - Hieronymus Fischer, Sep 18 2007
a(n) = (n - A010872(n))/3. - Hieronymus Fischer, Sep 18 2007
Complex representation: a(n) = (n - (1 - r^n)*(1 + r^n/(1 - r)))/3 where r = exp(2*Pi/3*i) = (-1 + sqrt(3)*i)/2 and i = sqrt(-1). - Hieronymus Fischer, Sep 18 2007; - corrected by Guenther Schrack, Sep 26 2019
a(n) = Sum_{k=0..n-1} A022003(k). - Hieronymus Fischer, Sep 18 2007
G.f.: x^3/((1-x)*(1-x^3)). - Hieronymus Fischer, Sep 18 2007
a(n) = (n - 1 + 2*sin(4*(n+2)*Pi/3)/sqrt(3))/3. - Jaume Oliver Lafont, Dec 05 2008
For n >= 3, a(n) = floor(log_3(3^a(n-1) + 3^a(n-2) + 3^a(n-3))). - Vladimir Shevelev, Jun 22 2010
a(n) = (n - 3 + A010872(n-1) + A010872(n-2))/3 using Zumkeller's 2008 formula in A010872. - Adriano Caroli, Nov 23 2010
a(n) = A004526(n) - A008615(n). - Reinhard Zumkeller, Apr 28 2014
a(2*n) = A004523(n) and a(2*n+1) = A004396(n). - L. Edson Jeffery, Jul 30 2014
a(n) = n - 2 - a(n-1) - a(n-2) for n > 1 with a(0) = a(1) = 0. - Derek Orr, Apr 28 2015
From Wesley Ivan Hurt, May 27 2015: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4), n > 4.
a(n) = (n - 1 + 0^((-1)^(n/3) - (-1)^n) - 0^((-1)^(n/3)*(-1)^(1/3) + (-1)^n))/3. (End)
a(n) = (3*n - 3 + r^n*(1 - r) + r^(2*n)*(r + 2))/9 where r = (-1 + sqrt(-3))/2. - Guenther Schrack, Sep 26 2019
E.g.f.: exp(x)*(x - 1)/3 + exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 17 2022

A131708 A024494 prefixed by a 0.

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 21, 43, 86, 171, 341, 682, 1365, 2731, 5462, 10923, 21845, 43690, 87381, 174763, 349526, 699051, 1398101, 2796202, 5592405, 11184811, 22369622, 44739243, 89478485, 178956970, 357913941, 715827883, 1431655766, 2863311531, 5726623061, 11453246122
Offset: 0

Views

Author

Paul Curtz, Sep 14 2007, Mar 01 2008

Keywords

Comments

Binomial transform of 0, 1, 0. Also A024495 = first differences.
Recurrence: a(n+1) - 2*a(n) = 1, 0, -1, -1, 0, 1, 1.
{A024493, A131708, A024495} is the difference analog of the hyperbolic functions {h_1(x), h_2(x), h_3(x)} of order 3. For the definitions of {h_i(x)} and the difference analog {H_i(n)} see [Erdelyi] and the Shevelev link respectively. - Vladimir Shevelev, Aug 01 2017

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

Crossrefs

Programs

  • Magma
    [n le 3 select n-1 else 3*Self(n-1) -3*Self(n-2) +2*Self(n-3): n in [1..40]]; // G. C. Greubel, Jan 23 2023
    
  • Mathematica
    LinearRecurrence[{3,-3,2}, {0,1,2}, 40] (* Harvey P. Dale, Nov 27 2013 *)
  • PARI
    v=vector(99,i,i);for(i=4,#v,v[i]=3*v[i-1]-3*v[i-2]+2*v[i-3]);v \\ Charles R Greathouse IV, Jun 01 2011
    
  • SageMath
    def A131708(n): return (1/3)*(2^n -chebyshev_U(n,1/2) +2*chebyshev_U(n-1,1/2))
    [A131708(n) for n in range(41)] # G. C. Greubel, Jan 23 2023

Formula

G.f.: x*(1-x)/((1-2*x)*(1-x+x^2)). - R. J. Mathar, Nov 14 2007
Recurrences:
a(n) = k*a(n-1) + (6-3*k)*a(n-2) + (3*k-7)*a(n-3) + (6-2*k)*a(n-4).
k = 0: a(n) = 6*a(n-2) - 7*a(n-3) + 6*a(n-4).
k = 1: a(n) = a(n-1) + 3*a(n-2) - 4*a(n-3) + 4*a(n-4).
k = 2: a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4), cf. A113405, A135350.
k = 3: a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3), this sequence.
k = 4: a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 2*a(n-4), cf. A111927.
k = 5: a(n) = 5*a(n-1) - 9*a(n-2) + 8*a(n-3) - 4*a(n-4), cf. A137221.
The sum of coefficients = 5 - k. Of the family k=3 gives the best recurrence.
a(n+m) = a(n)*A024493(m) + A024493(n)*a(m) + A024495(n)*A024495(m). - Vladimir Shevelev, Aug 01 2017
From Kevin Ryde, Sep 24 2020: (Start)
a(n) = (1/3)*2^n - (1/3)*cos((1/3)*Pi*n) + (1/sqrt(3))*sin((1/3)*Pi*n). [Cournot]
a(n) + A024495(n) + A111927(n) = 2^n - 1. [Cournot, page 96 last formula, but misprint should be 2^x - 1 rather than 2^p - 1]. (End)
a(n) = C(n,1) + C(n,4) + ... + C(n, 3*floor(n/3)+1). - Jianing Song, Oct 04 2021
E.g.f.: exp(x/2)*(exp(3*x/2) - cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/3. - Stefano Spezia, Feb 06 2025

A099855 a(n) = n*2^n - 2^(n/2)*sin(Pi*n/4).

Original entry on oeis.org

0, 1, 6, 22, 64, 164, 392, 904, 2048, 4592, 10208, 22496, 49152, 106560, 229504, 491648, 1048576, 2227968, 4718080, 9960960, 20971520, 44041216, 92276736, 192940032, 402653184, 838856704, 1744822272, 3623870464, 7516192768
Offset: 0

Views

Author

Paul Barry, Oct 28 2004

Keywords

Comments

Related to binomial transform of A002265. Sequence is identical to its fourth differences (cf. A139756, A137221). See also A097064, A135035, A038504, A135356. - Paul Curtz, Jun 18 2008

Crossrefs

Binomial transform of A047538.

Programs

  • Magma
    I:=[0,1,6,22]; [n le 4 select I[n] else 6*Self(n-1) -14*Self(n-2) +16*Self(n-3) -8*Self(n-4): n in [1..51]]; // G. C. Greubel, Apr 20 2023
    
  • Mathematica
    LinearRecurrence[{6,-14,16,-8},{0,1,6,22},30] (* Harvey P. Dale, Mar 22 2018 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A099855
        if (n<5): return (0,1,6,22,64)[n]
        else: return 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 8*a(n-4)
    [a(n) for n in range(51)] # G. C. Greubel, Apr 20 2023

Formula

G.f.: x/((1-2*x+2*x^2)*(1-4*x+4*x^2)).
a(n) = Sum_{k=0..n} 2^(k/2)*sin(Pi*k/4)*2^(n-k)*(n-k+1).
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 8*a(n-4).
a(n) = 2*A001787(n) - A009545(n).
Showing 1-3 of 3 results.