cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137229 Expansion of g.f. x/((1-x)*(1-3*x+2*x^2-x^3)).

Original entry on oeis.org

1, 4, 11, 27, 64, 150, 350, 815, 1896, 4409, 10251, 23832, 55404, 128800, 299425, 696080, 1618191, 3761839, 8745216, 20330162, 47261894, 109870575, 255418100, 593775045, 1380359511, 3208946544, 7459895656, 17342153392, 40315615409, 93722435100, 217878227875
Offset: 1

Views

Author

Richard Choulet, Apr 05 2008

Keywords

Comments

Previous name was: Transform of A000217 without the initial 0 by the T_{0,0} transformation (see link).
Partial sums of A095263. - R. J. Mathar, Nov 04 2008

Crossrefs

Programs

  • Magma
    I:=[1,4,11,27]; [n le 4 select I[n] else 4*Self(n-1) -5*Self(n-2) +3*Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Apr 17 2021
    
  • Maple
    a:= n-> (<<3|1|0|0>, <-2|0|1|0>, <1|0|0|0>, <1|0|0|1>>^n)[4, 1]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 24 2008
  • Mathematica
    LinearRecurrence[{4,-5,3,-1},{1,4,11,27},40] (* Harvey P. Dale, Nov 10 2014 *)
  • Sage
    def A137229_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x/((1-x)*(1-3*x+2*x^2-x^3)) ).list()
    a=A137229_list(41); a[1:] # G. C. Greubel, Apr 17 2021

Formula

O.g.f: x/((1-x)*(1 -3*x +2*x^2 -x^3)).
a(n) = term (4,1) in the 4x4 matrix [3,1,0,0; -2,0,1,0; 1,0,0,0; 1,0,0,1]^(n). - Alois P. Heinz, Jul 24 2008

Extensions

New name using g.f., Joerg Arndt, Apr 18 2021