A137247 a(n) = 4*a(n-1) - 6*a(n-2) + 6*a(n-3) - 3*a(n-4), with initial terms 0, 0, 0, 1.
0, 0, 0, 1, 4, 10, 22, 49, 112, 256, 580, 1309, 2956, 6682, 15106, 34141, 77152, 174352, 394024, 890473, 2012404, 4547866, 10277806, 23227033, 52491280, 118626160, 268085740, 605852581, 1369179004, 3094236490, 6992730202, 15803018149
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,6,-3).
Crossrefs
Cf. A052103.
Programs
-
Magma
I:=[0,0,0,1]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +6*Self(n-3) -3*Self(n-4): n in [1..41]]; // G. C. Greubel, Apr 15 2021
-
Maple
a[0]:=0: a[1]:=0: a[2]:=0: a[3]:=1: for n from 4 to 30 do a[n]:=4*a[n-1]-6*a[n-2]+6*a[n-3]-3*a[n-4] end do: seq(a[n],n=0..30); # Emeric Deutsch, Mar 17 2008
-
Mathematica
LinearRecurrence[{4,-6,6,-3}, {0,0,0,1}, 41] (* G. C. Greubel, Apr 15 2021 *)
-
Sage
def A137247_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^3/((1-x)*(1-3*x+3*x^2-3*x^3)) ).list() A137247_list(40) # G. C. Greubel, Apr 15 2021
Formula
From R. J. Mathar, Apr 01 2008: (Start)
O.g.f.: x^3/((1-x)*(1-3*x+3*x^2-3*x^3)).
A052103(n) = a(n+2) - a(n+1). (End)
Extensions
Name edited by Michel Marcus, Jan 29 2019
Comments