cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137247 a(n) = 4*a(n-1) - 6*a(n-2) + 6*a(n-3) - 3*a(n-4), with initial terms 0, 0, 0, 1.

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 22, 49, 112, 256, 580, 1309, 2956, 6682, 15106, 34141, 77152, 174352, 394024, 890473, 2012404, 4547866, 10277806, 23227033, 52491280, 118626160, 268085740, 605852581, 1369179004, 3094236490, 6992730202, 15803018149
Offset: 0

Views

Author

Paul Curtz, Mar 10 2008

Keywords

Comments

Essentially the partial sums of A052103. - R. J. Mathar, Apr 01 2008

Crossrefs

Cf. A052103.

Programs

  • Magma
    I:=[0,0,0,1]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +6*Self(n-3) -3*Self(n-4): n in [1..41]]; // G. C. Greubel, Apr 15 2021
    
  • Maple
    a[0]:=0: a[1]:=0: a[2]:=0: a[3]:=1: for n from 4 to 30 do a[n]:=4*a[n-1]-6*a[n-2]+6*a[n-3]-3*a[n-4] end do: seq(a[n],n=0..30); # Emeric Deutsch, Mar 17 2008
  • Mathematica
    LinearRecurrence[{4,-6,6,-3}, {0,0,0,1}, 41] (* G. C. Greubel, Apr 15 2021 *)
  • Sage
    def A137247_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^3/((1-x)*(1-3*x+3*x^2-3*x^3)) ).list()
    A137247_list(40) # G. C. Greubel, Apr 15 2021

Formula

From R. J. Mathar, Apr 01 2008: (Start)
O.g.f.: x^3/((1-x)*(1-3*x+3*x^2-3*x^3)).
A052103(n) = a(n+2) - a(n+1). (End)

Extensions

More terms from R. J. Mathar, Rolf Pleisch and Emeric Deutsch, Apr 01 2008
Name edited by Michel Marcus, Jan 29 2019