cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137268 Triangle T(n, k) = k! * (k+1)^(n-k), read by rows.

Original entry on oeis.org

1, 2, 2, 4, 6, 6, 8, 18, 24, 24, 16, 54, 96, 120, 120, 32, 162, 384, 600, 720, 720, 64, 486, 1536, 3000, 4320, 5040, 5040, 128, 1458, 6144, 15000, 25920, 35280, 40320, 40320, 256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 362880
Offset: 1

Views

Author

Roger L. Bagula, Mar 12 2008

Keywords

Comments

Essentially the same as A104001.

Examples

			Triangle begins as:
    1;
    2,     2;
    4,     6,     6;
    8,    18,    24,     24;
   16,    54,    96,    120,    120;
   32,   162,   384,    600,    720,     720;
   64,   486,  1536,   3000,   4320,    5040,    5040;
  128,  1458,  6144,  15000,  25920,   35280,   40320,   40320;
  256,  4374, 24576,  75000, 155520,  246960,  322560,  362880,  362880;
  512, 13122, 98304, 375000, 933120, 1728720, 2580480, 3265920, 3628800, 3628800;
		

Crossrefs

Programs

  • Magma
    [Factorial(k)*(k+1)^(n-k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 28 2022
    
  • Mathematica
    T[n_, k_]:= k!*(k+1)^(n-k);
    Table[T[n, k], {n, 12}, {k, n}]//Flatten
  • SageMath
    def A137268(n,k): return factorial(k)*(k+1)^(n-k)
    flatten([[A137268(n,k) for k in range(1,n+1)] for n in range(14)]) # G. C. Greubel, Nov 28 2022

Formula

J(b, n) = (b+1)^(n-b)*b! if n > b, otherwise n! (notation of Chung and Graham).
From G. C. Greubel, Nov 28 2022: (Start)
T(n, k) = k! * (k+1)^(n-k).
T(n, n-2) = 2*A074143(n), n > 1.
T(2*n, n) = A152684(n).
T(2*n, n-1) = A061711(n).
T(2*n+1, n+1) = A066319(n). (End)

Extensions

Edited by G. C. Greubel, Nov 28 2022