cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A152684 a(n) is the number of top-down sequences (F_1, F_2, ..., F_n) whereas each F_i is a labeled forest on n nodes, containing i directed rooted trees. F_(i+1) is proper subset of F_i.

Original entry on oeis.org

1, 2, 18, 384, 15000, 933120, 84707280, 10569646080, 1735643790720, 362880000000000, 94121726392108800, 29658516531078758400, 11159820050604594969600, 4942478402320838374195200, 2544989406021562500000000000, 1507645899890367707813511168000
Offset: 1

Views

Author

Fabian Nedic, Dec 10 2008

Keywords

Examples

			a(1) = 1^(1-2)*(1!) = 1.
a(2) = 2^(2-2)*(2!) = 2.
a(3) = 3^(3-2)*(3!) = 18.
		

References

  • Miklos Bona, Introduction to Enumerative Combinatorics, McGraw Hill 2007, Page 276.

Crossrefs

Programs

  • Magma
    [Factorial(n-1)*n^(n-1): n in [1..20]]; // G. C. Greubel, Nov 28 2022
    
  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          a(n-1)*(n/(n-1))^(n-3)*n^2)
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, May 16 2013
  • Mathematica
    Table[n^(n - 1) (n - 1)!, {n, 1, 16}]  (* Geoffrey Critzer, May 10 2013 *)
  • SageMath
    [factorial(n-1)*n^(n-1) for n in range(1,21)] # G. C. Greubel, Nov 28 2022

Formula

a(n) = n^(n-2)*(n!).

A104001 Triangle T(n,k) read by rows: number of permutations in S_n avoiding all k-length patterns starting with fixed m, 2

Original entry on oeis.org

2, 4, 6, 8, 18, 24, 16, 54, 96, 120, 32, 162, 384, 600, 720, 64, 486, 1536, 3000, 4320, 5040, 128, 1458, 6144, 15000, 25920, 35280, 40320, 256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 512, 13122, 98304, 375000, 933120, 1728720, 2580480, 3265920, 3628800
Offset: 3

Views

Author

Ralf Stephan, Feb 26 2005

Keywords

Examples

			Triangle begins as:
    2;
    4,    6;
    8,   18,   24;
   16,   54,   96,   120;
   32,  162,  384,   600,   720;
   64,  486, 1536,  3000,  4320,  5040;
  128, 1458, 6144, 15000, 25920, 35280, 40320;
		

Crossrefs

Programs

  • Magma
    [Factorial(k-1)*(k-1)^(n-k): k in [3..n], n in [3..15]]; // G. C. Greubel, Nov 29 2022
    
  • Mathematica
    Table[(k-1)!*(k-1)^(n-k), {n,3,15}, {k,3,n}]//Flatten (* G. C. Greubel, Nov 29 2022 *)
  • SageMath
    def A104001(n,k): return factorial(k-1)*(k-1)^(n-k)
    flatten([[A104001(n,k) for k in range(3,n+1)] for n in range(3,16)]) # G. C. Greubel, Nov 29 2022

Formula

T(n, k) = (k-2)! * (k-1)^(n+1-k).
From G. C. Greubel, Nov 29 2022: (Start)
T(n, 3) = A000079(n-2).
T(n, 4) = 6*A000244(n-4).
T(n, 5) = 4!*A000302(n-5).
T(2*n-3, n) = A152684(n-1). (End)
Showing 1-2 of 2 results.