Fabian Nedic has authored 2 sequences.
A253677
Product of decimal digits of n-th term of the Look and Say sequence A005150.
Original entry on oeis.org
1, 1, 2, 2, 4, 12, 24, 36, 216, 1296, 62208, 746496, 107495424, 46438023168, 240734712102912, 8423789045905096704, 5589622068988418728132608, 133524176512370516060034538930176, 581306137722148449693374999786222908342272
Offset: 1
a(5) = A007954(A005150(5)) = A007954(111221) = 4.
A152684
a(n) is the number of top-down sequences (F_1, F_2, ..., F_n) whereas each F_i is a labeled forest on n nodes, containing i directed rooted trees. F_(i+1) is proper subset of F_i.
Original entry on oeis.org
1, 2, 18, 384, 15000, 933120, 84707280, 10569646080, 1735643790720, 362880000000000, 94121726392108800, 29658516531078758400, 11159820050604594969600, 4942478402320838374195200, 2544989406021562500000000000, 1507645899890367707813511168000
Offset: 1
a(1) = 1^(1-2)*(1!) = 1.
a(2) = 2^(2-2)*(2!) = 2.
a(3) = 3^(3-2)*(3!) = 18.
- Miklos Bona, Introduction to Enumerative Combinatorics, McGraw Hill 2007, Page 276.
-
[Factorial(n-1)*n^(n-1): n in [1..20]]; // G. C. Greubel, Nov 28 2022
-
a:= proc(n) option remember; `if`(n=1, 1,
a(n-1)*(n/(n-1))^(n-3)*n^2)
end:
seq(a(n), n=1..20); # Alois P. Heinz, May 16 2013
-
Table[n^(n - 1) (n - 1)!, {n, 1, 16}] (* Geoffrey Critzer, May 10 2013 *)
-
[factorial(n-1)*n^(n-1) for n in range(1,21)] # G. C. Greubel, Nov 28 2022