A137324 a(n) = Sum_{prime p < n} gcd(n,p).
1, 3, 2, 6, 3, 5, 6, 9, 4, 8, 5, 13, 12, 7, 6, 10, 7, 13, 16, 19, 8, 12, 13, 22, 11, 16, 9, 17, 10, 12, 23, 28, 21, 14, 11, 31, 26, 17, 12, 22, 13, 25, 20, 37, 14, 18, 21, 20, 33, 28, 15, 19, 30, 23, 36, 45, 16, 24, 17, 49, 26, 19, 34, 31, 18, 36, 43, 30, 19, 23, 20, 58, 27, 40, 37
Offset: 3
Examples
a(10) = 9 because gcd(10,2) = 2, gcd(10,3) = 1, gcd(10,5) = 5, gcd(10,7) = 1; 2 + 1 + 5 + 1 = 9. The underlying irregular table of gcd(n,2), gcd(n,3), gcd(n,5), gcd(n,7), etc., for which a(n) provides row sums, is obtained by deleting columns from A050873(n,k) and looks as follows for n=3,4,5,...: 1 2 1 1 1 2 3 1 1 1 1 2 1 1 1 1 3 1 1 2 1 5 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 2 1 1 7 1 1 1 3 5 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 5 1 1 1 1 1
Programs
-
Magma
[&+[Gcd(n,p):p in PrimesInInterval(1,n-1)]:n in [3..77]]; // Marius A. Burtea, Aug 07 2019
-
Maple
A137324 := proc(n) local a,i; a :=0 ; for i from 1 to numtheory[pi](n-1) do a := a+gcd(n,ithprime(i)) ; od: a; end: seq(A137324(n),n=3..80) ; # R. J. Mathar, Apr 09 2008
-
Mathematica
Table[Plus @@ GCD[n, Select[Range[n - 1], PrimeQ[ # ] &]], {n, 3, 70}] (* Stefan Steinerberger, Apr 09 2008 *)
-
PARI
a(n) = sum(k=1, n-1, gcd(n,k)*isprime(k)); \\ Michel Marcus, Nov 07 2014
-
Python
from math import gcd from sympy import primerange def a(n): return sum(gcd(n, p) for p in primerange(1, n)) print([a(n) for n in range(3, 78)]) # Michael S. Branicky, Nov 21 2021
Formula
a(p) = A000720(p) - 1 for prime p. - R. J. Mathar, Apr 09 2008
Extensions
Corrected and extended by R. J. Mathar and Stefan Steinerberger, Apr 09 2008