cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A137356 a(n) = Sum_{k <= n/2 } binomial(n-2k, 3k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 58, 92, 149, 250, 431, 750, 1299, 2227, 3784, 6401, 10828, 18364, 31236, 53228, 90741, 154603, 263178, 447702, 761403, 1295022, 2203162, 3749001, 6380241, 10858285, 18478155, 31443013, 53501860, 91034937, 154900529, 263576791
Offset: 0

Views

Author

Don Knuth, Apr 11 2008

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Programs

  • Magma
    I:=[1,1,1,1,1]; [n le 5 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3)+Self(n-5): n in [1..45]]; // Vincenzo Librandi, Aug 09 2015
  • Maple
    f:= gfun:-rectoproc({a(n) = 3*a(n-1)-3*a(n-2)+a(n-3)+a(n-5),seq(a(i)=1,i=0..4)},a(n),remember):
    map(f, [$0..50]); # Robert Israel, May 26 2017
  • Mathematica
    LinearRecurrence[{3, -3, 1, 0, 1}, {1, 1, 1, 1, 1}, 50] (* Vincenzo Librandi, Aug 09 2015 *)
    CoefficientList[Series[(1-x)^2/(1 - 3 x + 3 x^2 - x^3 - x^5), {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 09 2015 *)
    Table[Sum[Binomial[n-2k,3k],{k,0,n/2}],{n,0,50}] (* Harvey P. Dale, Nov 07 2021 *)

Formula

Let A_n = Sum_{k<=n/2}binomial(n-2k,3k) (the present sequence), B_n= Sum_{k<=n/2}binomial(n-2k, 3k+1)(A137357), C_n= Sum_{k<=n/2}binomial(n-2k, 3k+2) (A137358).
Then A_n = A_{n-1} + C_{n-3} + \delta_{n0}, B_n=B_{n-1} + A_{n-1}, C_n=C_{n-1} + B_{n-1};
so the generating functions are A = (1-z)^2/p(z), B=z(1-z)/p(z), C=z^2/p(z),
where p(z) = (1-z)^3 - z^5 = 1 - 3z + 3z^2 - z^3 - z^5.
The growth ratio is the real root of r^2(r-1)^3 = 1, approximately 1.70161.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3)+a(n-5). - Vincenzo Librandi, Aug 09 2015
a(n) = hypergeom([-(1/5)*n, -(1/5)*n+1/5, 2/5-(1/5)*n, 3/5-(1/5)*n, -(1/5)*n+4/5], [1/3, 2/3, -(1/2)*n, -(1/2)*n+1/2], -3125/108). - Robert Israel, May 26 2017
G.f.: -(x-1)^2/(-1+3*x-3*x^2+x^3+x^5) . - R. J. Mathar, May 29 2017

A137357 a(n) = Sum_{k <= n/2 } binomial(n-2k, 3k+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 12, 23, 44, 80, 138, 230, 379, 629, 1060, 1810, 3109, 5336, 9120, 15521, 26349, 44713, 75949, 129177, 219918, 374521, 637699, 1085401, 1846804, 3141826, 5344988, 9093989, 15474230, 26332515, 44810670, 76253683, 129755543, 220790480
Offset: 0

Views

Author

Don Knuth, Apr 11 2008

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1, 0, 1}, Range[0, 4], 50] (* Paolo Xausa, Mar 17 2024 *)

Formula

G.f.: x*(x-1) / (x^5+x^3-3*x^2+3*x-1). - Colin Barker, Jan 23 2013

A136444 a(n) = Sum_{k=0..n} k*binomial(n-k, 2*k).

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 12, 25, 51, 101, 197, 381, 731, 1392, 2634, 4958, 9290, 17337, 32239, 59760, 110460, 203651, 374593, 687567, 1259597, 2303449, 4205493, 7666560, 13956532, 25374108, 46076436, 83575025, 151431099, 274108826, 495708364, 895670733, 1617003823, 2916984121
Offset: 0

Views

Author

Don Knuth, Apr 04 2008

Keywords

Comments

Consider four related sequences: A_n = sum C(n-k, 2*k), B_n = sum C(n-k, 2*k+1), A^*_n = sum k*C(n-k, 2*k), B^*_n = sum k*C(n-k, 2*k+1).
Sequence A_n, with generating function (1-z)/p(z) where p(z) = 1 - 2*z + z^2 - z^3, is A005251.
Sequence B_n, with generating function z/p(z), is A005314.
Sequence A^*_n is the present sequence.
Sequence B^*_n is A118430, but shifted one place so that the generating function is z^4/p(z)^2 instead of z^3/p(z)^2.
These sequences have many interrelations; for example,
B_{n+1} - B_n = A_n; B^*_{n+1} - B^*_n = A^*_n;
A_{n+1} - A_n = B_{n-1}; A^*{n+1} - A^*_n = B^*{n-1} + B_{n-1}.

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Programs

  • Magma
    [&+[k*Binomial(n-k, 2*k): k in [0..n]]: n in [0..40]]; // Bruno Berselli, Feb 13 2015
  • Maple
    a:= n-> (Matrix([[0,0,1,1,-3,-5]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,-6,6,-5,2,-1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..37);  # Alois P. Heinz, Aug 13 2008
  • Mathematica
    a[n_] := ({0, 0, 1, 1, -3, -5} . MatrixPower[ Table[If[i == j-1, 1, If[j == 1, {4, -6, 6, -5, 2, -1}[[i]], 0]], {i, 6}, {j, 6}], n])[[1]]; Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
    CoefficientList[Series[x^3 (1 - x)/(1 - 2 x + x^2 - x^3)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 15 2015 *)

Formula

G.f.: x^3*(1-x)/(1-2*x+x^2-x^3)^2.
a(n) ~ c * d^n * n, where d = A109134 = 1.75487766624669276... is the root of the equation d*(d-1)^2 = 1, c = 0.072838349685011... is the root of the equation 529*c^3 - 207*c^2 + 26*c = 1. - Vaclav Kotesovec, May 25 2015

A137358 a(n) = Sum_{k <= n/2 } binomial(n-2k, 3k+2).

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 22, 34, 57, 101, 181, 319, 549, 928, 1557, 2617, 4427, 7536, 12872, 21992, 37513, 63862, 108575, 184524, 313701, 533619, 908140, 1545839, 2631240, 4478044, 7619870, 12964858, 22058847, 37533077, 63865592, 108676262, 184929945, 314685488
Offset: 0

Views

Author

Don Knuth, Apr 11 2008

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-2k,3k+2],{k,0,Floor[n/2]}],{n,0,50}] (* or *) LinearRecurrence[{3,-3,1,0,1},{0,0,1,3,6},50] (* Harvey P. Dale, Nov 06 2012 *)

Formula

a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(n)=3*a(n-1)-3*a(n-2)+ a(n-3)+ a(n-5). - Harvey P. Dale, Nov 06 2012
G.f.: -x^2/(x^5+x^3-3*x^2+3*x-1). - Colin Barker, Jan 23 2013

A137359 a(n) = Sum_{k <= n/2 } k*binomial(n-2k, 3k).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 4, 10, 20, 35, 58, 98, 176, 333, 640, 1213, 2242, 4052, 7226, 12835, 22842, 40788, 72952, 130344, 232200, 412190, 729466, 1288216, 2272012, 4003795, 7050358, 12404345, 21801674, 38275760, 67125420, 117604174, 205865368, 360090917, 629414866
Offset: 0

Views

Author

Don Knuth, Apr 11 2008

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[10, 4, 1, 0$7]]). Matrix (10, (i,j)-> if i=j-1 then 1 elif j=1 then [6, -15, 20, -15, 8, -7, 6, -2, 0, -1][i] else 0 fi)^n)[1,8]: seq (a(n), n=0..50); # Alois P. Heinz, Oct 23 2008
  • Mathematica
    LinearRecurrence[{6, -15, 20, -15, 8, -7, 6, -2, 0, -1}, {0, 0, 0, 0, 0, 1, 4, 10, 20, 35}, 50] (* Paolo Xausa, Mar 17 2024 *)

Formula

G.f.: x^5*(1-x)^2/(x^5+x^3-3*x^2+3*x-1)^2. - Alois P. Heinz, Oct 23 2008

A137360 a(n) = Sum_{k <= n/2 } k*binomial(n-2k, 3k+1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 5, 15, 35, 70, 128, 226, 402, 735, 1375, 2588, 4830, 8882, 16108, 28943, 51785, 92573, 165525, 295869, 528069, 940259, 1669725, 2957941, 5229953, 9233748, 16284106, 28688451, 50490125, 88765885, 155891305, 273495479, 479360847, 839451764
Offset: 0

Views

Author

Don Knuth, Apr 11 2008

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[35, 15, 5, 1, 0$6]]). Matrix (10, (i,j)-> if i=j-1 then 1 elif j=1 then [6, -15, 20, -15, 8, -7, 6, -2, 0, -1][i] else 0 fi)^n)[1,10]: seq (a(n), n=0..50);  # Alois P. Heinz, Oct 23 2008
  • Mathematica
    Table[Sum[k Binomial[n-2k,3k+1],{k,n/2}],{n,0,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,8,-7,6,-2,0,-1},{0,0,0,0,0,0,1,5,15,35},40] (* Harvey P. Dale, May 31 2017 *)

Formula

G.f.: x^6*(1-x)/(x^5+x^3-3*x^2+3*x-1)^2. - Alois P. Heinz, Oct 23 2008

A138780 Triangle read by rows: T(n,k)=k*binomial(n-2k,3k+2) (n>=7, 1<=k<=(n-2)/5).

Original entry on oeis.org

1, 6, 21, 56, 126, 252, 2, 462, 18, 792, 90, 1287, 330, 2002, 990, 3003, 2574, 3, 4368, 6006, 36, 6188, 12870, 234, 8568, 25740, 1092, 11628, 48620, 4095, 15504, 87516, 13104, 4, 20349, 151164, 37128, 60
Offset: 7

Views

Author

Emeric Deutsch, May 10 2008

Keywords

Comments

Row n contains floor((n-2)/5) terms.
Row sums yield A137361.

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Cf. A137361.

Programs

  • Maple
    T:=proc(n,k) options operator, arrow: k*binomial(n-2*k, 3*k+2) end proc: for n from 7 to 23 do seq(T(n,k),k=1..(n-2)*1/5) end do; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[k*Binomial[n-2k,3k+2],{n,7,30},{k,1,(n-2)/5}]] (* Harvey P. Dale, Aug 22 2015 *)
Showing 1-7 of 7 results.