cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137364 Prime numbers n such that n = p1^2 + p2^2 + p3^2, a sum of squares of 3 distinct prime numbers.

Original entry on oeis.org

83, 179, 227, 347, 419, 419, 467, 491, 563, 587, 659, 659, 827, 971, 1019, 1019, 1091, 1259, 1427, 1499, 1499, 1667, 1811, 1811, 1907, 1907, 1979, 1979, 2027, 2243, 2267, 2339, 2339, 2531, 2579, 2699, 2819, 2843, 2939, 3347, 3539, 3539, 3659, 3659, 3779
Offset: 1

Views

Author

Keywords

Comments

Multiple solutions with different sets {p1,p2,p3} are indicated by repeating the entry for each solution. - R. J. Mathar, Apr 12 2008
All terms are congruent to 5 modulo 6. The smallest of the primes {p1,p2,p3} is always 3. - Zak Seidov, Jun 03 2014

Examples

			83 = 3^2 + 5^2 + 7^2;
179 = 3^2 + 7^2 + 11^2;
227 = 3^2 + 7^2 + 13^2.
		

Crossrefs

Cf. A182479, A243342. - Zak Seidov, Jun 03 2014

Programs

  • Mathematica
    Array[r, 99]; Array[y, 99]; For[i = 0, i < 10^2, r[i] = y[i] = 0; i++ ]; z = 4^2; n = 0; For[i1 = 1, i1 < z, a = Prime[i1]; a2 = a^2; For[i2 = i1 + 1, i2 < z, b = Prime[i2]; b2 = b^2; For[i3 = i2 + 1, i3 < z, c = Prime[i3]; c2 = c^2; p = a2 + b2 + c2; If[PrimeQ[p], Print[a2, " + ", b2, " + ", c2, " = ", p]; n++; r[n] = p]; i3++ ]; i2++ ]; i1++ ]; Sort[Array[r, 39]]
    lst= {}; Do[p = Prime[q]^2 + Prime[r]^2 + Prime[s]^2; If[PrimeQ@p, AppendTo[lst, p]], {q, 26}, {r, q-1}, {s, r-1}]; Take[Sort@lst,72] (* Vincenzo Librandi, Jun 15 2013 *)

Extensions

More terms from R. J. Mathar, Apr 12 2008