A137374 Triangular array of the coefficients of the Jacobsthal-Lucas polynomials ordered by descending powers, read by rows.
2, 1, 4, 1, 6, 1, 8, 8, 1, 20, 10, 1, 16, 36, 12, 1, 56, 56, 14, 1, 32, 128, 80, 16, 1, 144, 240, 108, 18, 1, 64, 400, 400, 140, 20, 1, 352, 880, 616, 176, 22, 1, 128, 1152, 1680, 896, 216, 24, 1, 832, 2912, 2912, 1248, 260, 26, 1, 256, 3136, 6272, 4704, 1680, 308, 28, 1
Offset: 0
Examples
The triangle starts: 2; 1; 4, 1; 6, 1; 8, 8, 1; 20, 10, 1; 16, 36, 12, 1; 56, 56, 14, 1; 32, 128, 80, 16, 1; 144, 240, 108, 18, 1; 64, 400, 400, 140, 20, 1; 352, 880, 616, 176, 22, 1; ...
Links
- Eric Weisstein's World of Mathematics, Jacobsthal-Lucas Polynomial.
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, 2-n, b(n-1)+2*expand(x*b(n-2))) end: T:= n-> (p-> (d-> seq(coeff(p, x, d-i), i=0..d))(degree(p)))(b(n)): seq(T(n), n=0..20); # Alois P. Heinz, Feb 25 2020
-
Mathematica
f[0] = 2; f[1] = 1; f[n_] := 2 x f[n - 2] + f[n - 1]; Table[Reverse[CoefficientList[f[n], x]], {n, 0, 14}] // Flatten (* Jinyuan Wang, Feb 25 2020 *)
Formula
Let p(n, x) = 2*x*p(n-2, x) + p(n-1, x) with p(0, x) = 2 and p(1, x) = 1. The coefficients of the polynomial p(n, x), listed in reverse order, give row n. - Jinyuan Wang, Feb 25 2020
Extensions
Offset set to 0 by Peter Luschny, Feb 25 2020
Comments