A137488 Numbers with 25 divisors.
1296, 10000, 38416, 50625, 194481, 234256, 456976, 1185921, 1336336, 1500625, 2085136, 2313441, 4477456, 6765201, 9150625, 10556001, 11316496, 14776336, 16777216, 17850625, 22667121, 29986576, 35153041, 45212176, 52200625
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Haskell
a137488 n = a137488_list !! (n-1) a137488_list = m (map (^ 24) a000040_list) (map (^ 4) a006881_list) where m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys' | otherwise = y : m xs' ys -- Reinhard Zumkeller, Nov 29 2011
-
Mathematica
lst = {}; Do[If[DivisorSigma[0, n] == 25, Print[n]; AppendTo[lst, n]], {n, 55000000}]; lst (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *) Select[Range[5221*10^4],DivisorSigma[0,#]==25&] (* Harvey P. Dale, Mar 11 2019 *)
-
PARI
is(n)=numdiv(n)==25 \\ Charles R Greathouse IV, Jun 19 2016
-
Python
from math import isqrt from sympy import primepi, integer_nthroot, primerange def A137488(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,4)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)))-primepi(integer_nthroot(x,24)[0]) return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025
Formula
A000005(a(n)) = 25.
Sum_{n>=1} 1/a(n) = (P(4)^2 - P(8))/2 + P(24) = 0.000933328..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022
Comments