A137560 Let f(z) = z^2 + c, then row k lists the expansion of the n-fold composition f(f(...f(0)...)) in rising powers of c.
1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 5, 6, 6, 4, 1, 0, 1, 1, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1, 0, 1, 1, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788
Offset: 0
Examples
Triangle starts: {1}, {0, 1}, {0, 1, 1}, {0, 1, 1, 2, 1}, {0, 1, 1, 2, 5, 6, 6, 4, 1}, {0, 1, 1, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1}, {0, 1, 1, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1}, ...
References
- Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer, New York, 1993, pp 128-129
Links
- Alois P. Heinz, Rows n = 0..13, flattened (rows n=0..8 from Roger L. Bagula)
- Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Trans., Vol. 1, No. 1, Article 1 (July 2021).
- Robert Munafo, Lemniscates [From _Robert Munafo_, Oct 29 2009]
- Everything2 user ferrouslepidoptera, How many melodies are there in the universe? [From _Robert Munafo_, Oct 29 2009]
- Wikipedia, Mandelbrot set
Crossrefs
A052154 gives the same array read by antidiagonals.
A137867 gives the related Misiurewicz polynomials. [From Robert Munafo, Dec 12 2009]
Cf. A202019 (reversed rows).
Cf. A309049.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand( x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n))) end: T:= n-> `if`(n=0, 1, (m-> (p-> seq(coeff(p, x, m-i), i=-1..m))(b(m)))(2^(n-1)-1)): seq(T(n), n=0..7); # Alois P. Heinz, Jul 11 2019
-
Mathematica
f[z_] = z^2 + x; g = Join[{1}, ExpandAll[NestList[f, x, 7]]]; a = Table[CoefficientList[g[[n]], x], {n, 1, Length[g]}]; Flatten[a] Table[Apply[Plus, CoefficientList[g[[n]], x]], {n, 1, Length[g]}];
-
PARI
p = vector(6); p[1] = x; for(n=2,6, p[n] = p[n-1]^2 + x); print1("1"); for(n=1,6, for(m=0,poldegree(p[n]), print1(", ",polcoeff(p[n],m)))) \\ Gerald McGarvey, Sep 26 2008
Extensions
Edited by N. J. A. Sloane, Apr 26 2008
Offset set to 0 and new name from Joerg Arndt, Jun 04 2016
Comments