cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A137867 Triangular sequence of coefficients of the Misiurewicz polynomial which are made from the Pc Mandelbrot -Julia polynomials A137560 as: Pc(x,n)-Pc(x,m); n<>m.

Original entry on oeis.org

-1, 1, 0, 0, 1, -1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 2, 1, -1, 1, 1, 2, 1, 0, 0, 0, 0, 4, 6, 6, 4, 1, 0, 0, 0, 2, 5, 6, 6, 4, 1, 0, 0, 1, 2, 5, 6, 6, 4, 1, -1, 1, 1, 2, 5, 6, 6, 4, 1, 0, 0, 0, 0, 0, 8, 20, 40, 68, 94, 114, 116, 94, 60, 28, 8, 1, 0, 0, 0, 0, 4, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1, 0, 0, 0, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8
Offset: 1

Views

Author

Roger L. Bagula, Apr 29 2008

Keywords

Comments

Row sums are: {0, 1, 1, 3, 4, 4, 21, 24, 25, 25, 651, 672, 675, 676, 676, 457653, 458304, 458325, 458328, 458329, 458329};
The roots of these polynomials are called Misiurewicz points and they are found in the antenna areas of the Mandelbrot set M.

Examples

			{-1, 1},
{0, 0, 1},
{-1, 1, 1},
{0, 0, 0, 2, 1},
{0, 0, 1, 2, 1},
{-1, 1, 1, 2, 1},
{0, 0, 0, 0, 4, 6, 6, 4, 1},
{0, 0, 0, 2, 5, 6, 6, 4, 1},
{0, 0, 1, 2, 5, 6, 6, 4, 1},
{-1, 1, 1, 2, 5, 6, 6, 4, 1},
{0, 0, 0, 0, 0, 8, 20, 40, 68, 94, 114, 116, 94, 60, 28, 8, 1},
{0, 0, 0, 0, 4, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},
{0, 0, 0, 2,5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},
{0, 0, 1, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},
{-1, 1, 1, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},
{0, 0, 0, 0, 0, 0, 16, 56, 152, 376, 844, 1744, 3340, 5976, 10040, 15856, 23460, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
{0, 0, 0, 0, 0, 8, 36, 96, 220, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
{0, 0, 0, 0, 4, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
{0, 0, 0, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
{0, 0, 1, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
{-1, 1, 1, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1}
		

References

  • Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer, New York, 1993, p. 133ff.

Programs

  • Mathematica
    Clear[f, g, h, x]; f[z_] = z^2 + x; g = Join[{1}, ExpandAll[NestList[f, x, 5]]]; h = Union[Flatten[Table[Flatten[Table[If[n == m, {}, ExpandAll[g[[ n]] - g[[m]]]], {m, 1, n}]], {n, 1, Length[g]}]]]; a = Table[CoefficientList[h[[n]], x], {n, 1, Length[h]}]; Flatten[a] Table[Apply[Plus, CoefficientList[h[[n]], x]], {n, 1, Length[h]}];

Formula

Pc(x,n)-> Nested ( z^2+x: when z->x): A137560; Pc(x,n)-Pc(x,m); n<>m;

A003095 a(n) = a(n-1)^2 + 1 for n >= 1, with a(0) = 0.

Original entry on oeis.org

0, 1, 2, 5, 26, 677, 458330, 210066388901, 44127887745906175987802, 1947270476915296449559703445493848930452791205, 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026
Offset: 0

Views

Author

Keywords

Comments

Number of binary trees of height less than or equal to n. [Corrected by Orson R. L. Peters, Jan 03 2020]
The rightmost digits cycle (0,1,2,5,6,7,0,1,2,5,6,7,...). - Jonathan Vos Post, Jul 21 2005
Apart from the initial term, a subsequence of A008318. - Reinhard Zumkeller, Jan 17 2008
Partial sums of A001699. - Jonathan Vos Post, Feb 17 2010
Corresponds to the second and second last diagonals of A119687. - John M. Campbell, Jul 25 2011
This is a divisibility sequence. - Michael Somos, Jan 01 2013
Sum_{n>=1} 1/a(n) = 1.739940825174794649210636285335916041018367182486941... . - Vaclav Kotesovec, Jan 30 2015
From Vladimir Vesic, Oct 03 2015: (Start)
Forming Herbrand's domains of formula: (∃x)(∀y)(∀z)(∃k)(P(x)∨Q(y)∧R(k))
where: x->a
k->f(y,z)
we get:
H0 = {a}
H1 = {a, f(a,a)}
H2 = {a, f(a,a), f(a,f(a,a)), f(f(a,a),a), f(f(a,a),f(a,a))}
...
The number of elements in each domain follows this sequence.
(End)
It is an open question whether or not this sequence satisfies Benford's law [Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
This is a strong divisibility sequence; see A329429. - Clark Kimberling, Nov 13 2019
From Peter Bala, Oct 31 2022: (Start)
Let k be a positive integer. Clearly, the sequence obtained by reducing a(n) modulo k is eventually periodic. Conjectures:
1) The sequence obtained by reducing a(n) modulo 2^k is eventually periodic with period 2.
2) The sequence obtained by reducing a(n) modulo 10^k is eventually periodic with period 6 (the case k = 1 is noted above).
3) The sequence obtained by reducing a(n) modulo 20^k is eventually periodic with period 6.
4) For n >= floor(k/2) and for 1 <= i <= 6, the value of a(6*n+i) mod 10^k is a constant independent of n. The digits of these 6 constant integers, when read from right to left, are the first k digits of the 10-adic numbers A318135 (i = 1), A318136 (i = 2), A318137 (i = 3), A318138 (i = 4), A318139 (i = 5) and A318140 (i = 6), respectively. An example is given below.
n a(6*n+1) mod 10^11
1 10066388901
2 72084948901
3 67988948901
4 61588948901
5 01588948901
6 01588948901
7 01588948901
... ...
A318135 begins 1, 0, 9, 8, 4, 9, 8, 8, 5, 1, 0, 2, .... (End)

References

  • Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 443-448.
  • R. K. Guy, How to factor a number, Proc. 5th Manitoba Conf. Numerical Math., Congress. Num. 16 (1975), 49-89.
  • R. Penrose, The Emperor's New Mind, Oxford, 1989, p. 122.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A137560, which enumerates binary trees of height less than n and exactly j leaf nodes. - Robert Munafo, Nov 03 2009

Programs

Formula

a(n) = B_{n-1}(1) where B_n(x) = 1 + x*B_{n-1}(x)^2 is the generating function of trees of height <= n.
a(n) is asymptotic to c^(2^n) where c=1.2259024435287485386279474959130085213... (see A076949). - Benoit Cloitre, Nov 27 2002
c = b^(1/4) where b is the constant in Bottomley's formula in A004019. a(n) appears very asymptotic to c^(2^n) - Sum_{k>=1} A088674(k)/(2*c^(2^n))^(2*k-1). - Gerald McGarvey, Nov 17 2007
a(n) = Sum_{i=1..n} A001699(i). - Jonathan Vos Post, Feb 17 2010
G.f. = x + 2*x^2 + 5*x^3 + 26*x^4 + 677*x^5 + 458330*x^6 + 210066388901*x^7 + ... . - Michael Somos, Jan 01 2013
a(2n) mod 2 = 0 ; a(2n+1) mod 2 = 1. - Altug Alkan, Oct 04 2015
a(n) + a(n-1) = A213437(n). - Peter Bala, Feb 03 2017
0 = a(n)^2*(+a(n+1) + a(n+2)) + a(n+1)^2*(-a(n+1) - a(n+2) - a(n+3)) + a(n+2)^3 for all n>=0. - Michael Somos, Feb 10 2017
a(n) = A091980(2^(n-1)) for n > 0. - Alois P. Heinz, Jul 11 2019

Extensions

Additional comments from Cyril Banderier, Jun 05 2000
Minor edits by Vaclav Kotesovec, Oct 04 2014
Initial term clarified by Clark Kimberling, Nov 13 2019

A309049 Number T(n,k) of (binary) max-heaps on n elements from the set {0,1} containing exactly k 0's; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 4, 2, 1, 1, 1, 4, 6, 6, 5, 2, 1, 1, 1, 4, 7, 8, 7, 5, 2, 1, 1, 1, 5, 10, 12, 11, 8, 5, 2, 1, 1, 1, 5, 11, 16, 17, 13, 9, 5, 2, 1, 1, 1, 6, 15, 23, 27, 24, 16, 10, 5, 2, 1, 1, 1, 6, 16, 27, 34, 34, 27, 18, 11, 5, 2, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Comments

Also the number T(n,k) of (binary) min-heaps on n elements from the set {0,1} containing exactly k 1's.
The sequence of column k satisfies a linear recurrence with constant coefficients of order A063915(k).

Examples

			T(6,0) = 1: 111111.
T(6,1) = 3: 111011, 111101, 111110.
T(6,2) = 4: 110110, 111001, 111010, 111100.
T(6,3) = 4: 101001, 110010, 110100, 111000.
T(6,4) = 2: 101000, 110000.
T(6,5) = 1: 100000.
T(6,6) = 1: 000000.
T(7,4) = T(7,7-3) = A000108(3) = 5: 1010001, 1010010, 1100100, 1101000, 1110000.
Triangle T(n,k) begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  1,  1;
  1, 2,  2,  1,  1;
  1, 3,  3,  2,  1,  1;
  1, 3,  4,  4,  2,  1,  1;
  1, 4,  6,  6,  5,  2,  1,  1;
  1, 4,  7,  8,  7,  5,  2,  1,  1;
  1, 5, 10, 12, 11,  8,  5,  2,  1, 1;
  1, 5, 11, 16, 17, 13,  9,  5,  2, 1, 1;
  1, 6, 15, 23, 27, 24, 16, 10,  5, 2, 1, 1;
  1, 6, 16, 27, 34, 34, 27, 18, 11, 5, 2, 1, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000012, A110654, A114220 (for n>0), A326504, A326505, A326506, A326507, A326508, A326509, A326510, A326511.
Row sums give A091980(n+1).
T(2n,n) gives A309050.
Rows reversed converge to A000108.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
          x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..14);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f]*b[n - 1 - f]]][Min[g - 1, n - g/2]]][2^Floor[Log[2, n]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n]];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Oct 04 2019, after Alois P. Heinz *)

Formula

Sum_{k=0..n} k * T(n,k) = A309051(n).
Sum_{k=0..n} (n-k) * T(n,k) = A309052(n).
Sum_{k=0..2^n-1} T(2^n-1,k) = A003095(n+1).
Sum_{k=0..2^n-1} (2^n-1-k) * T(2^n-1,k) = A024358(n).
Sum_{k=0..n} (T(n,k) - T(n-1,k)) = A168542(n).
T(m,m-n) = A000108(n) for m >= 2^n-1 = A000225(n).
T(2^n-1,k) = A202019(n+1,k+1).

A202019 Triangle by rows, related to the numbers of binary trees of height less than n, derived from the Mandelbrot set.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 4, 6, 6, 5, 2, 1, 1, 1, 8, 28, 60, 94, 116, 114, 94, 69, 44, 26, 14, 5, 2, 1, 1, 1, 16, 120, 568, 1932, 5096, 10948, 19788, 30782, 41944, 50788, 55308, 54746, 49700, 41658, 32398, 23461, 15864, 10068, 6036, 3434, 1860, 958, 470, 221, 100, 42, 14, 5, 2, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Dec 08 2011

Keywords

Comments

As shown on p. 74 [Diaconis & Graham], n-th row polynomials are cyclic with period n, given real roots, if the polynomials are divided through by n. For example, taking x^3 + 2x^2 + x + 1 = 0, the real root = -1.75487766... = c. Then using x^2 + c, we obtain the period three trajectory: -1.75487... -> 1.32471...-> 0.
The shuffling connection [p.75], resulting in a permutation that is the Gilbreath shuffle: "To make the connection with shuffling cards, write down a periodic sequence starting at zero. Write a one above the smallest point, a two above the next smallest point and so on. For example, if c = -1.75486...(a period three point), we have:
2.............1.............3......
0........-1.75487........1.32471... For a fixed value of c, the numbers written on top code up a permutation that is a Gilbreath shuffle".
Row sums = A003095: (1, 2, 5, 26, 677,...) relating to the number of binary trees of height less than n.
Let f(z) = z^2 + c, then row k lists the expansion of the n-fold composition f(f(...f(0)...)) in falling powers of c (with the coefficients for c^0 omitted). The n initial terms of the reversed n-th row are the Catalan numbers (cf. A137560). - Joerg Arndt, Jun 04 2016

Examples

			Row 4 = (1, 4, 6, 6, 5, 2, 1, 1) since (x^4 + 2x^3 + x^2 + x)^2 + x = x^8 + 4x^7 + 6x^6 + 6x^5 + 5x^4 + 2x^3 + x^2 + x.
Triangle begins:
  1;
  1, 1;
  1, 2,  1,  1;
  1, 4,  6,  6,  5,   2,   1,  1;
  1, 8, 28, 60, 94, 116, 114, 94, 69, 44, 26, 14, 5, 2, 1, 1;
  ...
		

References

  • Persi Diaconis & R. L. Graham, "Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks", Princeton University Press, 2012; pp. 73-83.

Crossrefs

Row sums are A003095.
Cf. A137560 (reversed rows).
Cf. A309049.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
          x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2^(n-1)-1)):
    seq(T(n), n=1..7);  # Alois P. Heinz, Jul 11 2019
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f]*
         b[n-1-f]]][Min[g-1, n-g/2]]][2^(Length[IntegerDigits[n, 2]]-1)]];
    T[n_] := CoefficientList[b[2^(n-1)-1], x];
    Array[T, 7] // Flatten (* Jean-François Alcover, Feb 19 2021, after Alois P. Heinz *)

Formula

Coefficients of x by rows such that given n-th row p(x), the next row is (p(x))^2 + x; starting x -> (x^2 + x) -> (x^4 + 2*x^3 + x^2 + x)...
T(n,k) = A309049(2^(n-1)-1,k-1). - Alois P. Heinz, Jul 11 2019

A347928 Triangle read by rows, T(n, k) are the coefficients of the scaled Mandelbrot-Larsen polynomials P(n, x) = 2^(2*n-1)*M(n, x), where M(n, x) are the Mandelbrot-Larsen polynomials; for 0 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 0, 4, 2, 0, 16, 12, 12, 5, 0, 0, 32, 40, 40, 14, 0, 0, 192, 208, 168, 140, 42, 0, 0, 0, 640, 800, 720, 504, 132, 0, 2048, 1792, 2688, 3920, 3584, 3080, 1848, 429, 0, 0, 4096, 4608, 11520, 17760, 16512, 13104, 6864, 1430
Offset: 0

Views

Author

Peter Luschny, Oct 27 2021

Keywords

Comments

To avoid confusion: the polynomials which are called 'Mandelbrot polynomials' by some authors are listed in A137560. The name 'Mandelbrot-Larsen' polynomials was introduced in Calkin, Chan, & Corless to distinguish them from the Mandelbrot polynomials.

Examples

			Triangle starts:
[0]  0;
[1]  0,    1;
[2]  0,    2,    1;
[3]  0,    0,    4,    2;
[4]  0,   16,   12,   12,     5;
[5]  0,    0,   32,   40,    40,    14;
[6]  0,    0,  192,  208,   168,   140,    42;
[7]  0,    0,    0,  640,   800,   720,   504,   132;
[8]  0, 2048, 1792, 2688,  3920,  3584,  3080,  1848,  429;
[9]  0,    0, 4096, 4608, 11520, 17760, 16512, 13104, 6864, 1430.
		

Crossrefs

Programs

  • Maple
    M := proc(n, x) local k; option remember;
    if n = 0 then 0 elif n = 1 then x else add(M(k, x)*M(n-k, x), k = 1..n-1) +
    ifelse(n::even, M(n/2, x), 0) fi; expand(%/2) end:
    P := n -> 2^(2*n - 1)*M(n, x):
    row := n -> seq(coeff(P(n), x, k), k = 0..n): seq(row(n), n = 0..9);
  • Mathematica
    M[n_, x_] := M[n, x] = Module[{k, w}, w = Which[n == 0, 0, n == 1, x, True, Sum[M[k, x]*M[n-k, x], {k, 1, n-1}] + If[EvenQ[n], M[n/2, x], 0]]; Expand[w/2]];
    P[n_] := 2^(2*n - 1)*M[n, x];
    row [n_] := If[n == 0, {0}, CoefficientList[P[n], x]];
    Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Jul 07 2022, after Maple code *)

Formula

The Mandelbrot-Larsen polynomials are defined: M(0, x) = 0; M(1, x) = x/2;
M(n, x) = (1/2)*(even(n)*M(n/2, x) + Sum_{k=1..n-1} M(k, x)*M(n-k, x)) for n > 1. Here even(n) = 1 if n is even, otherwise 0.
P(n, x) = 2^(2*n-1)*M(n, x) (scaled Mandelbrot-Larsen polynomials).
T(n, k) = [x^k] P(n, x).
[x^k] M(n,k) = A348679(n, k) / A348678(n, k).
M(n, 2*k) = P(n, 2*k) / 2^(2*n-1) = A319539(n, k).
P(n, k) = A348686(n, k).
T(n, n) = A000108(n-1) for n >= 1, Catalan numbers.
T(n+2, n+1) / 2 = A000984(n) for n >= 0, central binomials.
P(n, 1) = A088674(n-1) for n >= 1, also row sums.
M(n, 2) = A001190(n) for n >= 0.
M(n, 4) = A083563(n) for n >= 0.
M(n,-4) = -A107087(n) for n >= 1.
M(n, 6) = A220816(n) for n >= 1.
M(n, 8) = A220817(n) for n >= 1.
Conjecture (Calkin, Chan, & Corless): content(P(n)) = gcd(row(n)) = A048896(n-1) for n >= 1.

A052154 Array read by antidiagonals: a(n,k)= coefficient of z^n of p_k(z), where p_k+1(z)=(p_k(z))^2+z, p_1(z)=z.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 5, 0, 0, 0, 1, 1, 2, 5, 6, 0, 0, 0, 1, 1, 2, 5, 14, 6, 0, 0, 0, 1, 1, 2, 5, 14, 26, 4, 0, 0, 0, 1, 1, 2, 5, 14, 42, 44, 1, 0, 0, 0, 1, 1, 2, 5, 14, 42, 100, 69, 0, 0, 0, 0
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 24 2000

Keywords

Comments

a(n,k+1)=a(n,k), n<=k; a(n,n)=A000108. Note that the set {z: limit(p_k(z),k->infinity) not=infinity} of complex numbers defines the Mandelbrot set.

Examples

			p_1(z)=z: coefficient = 1 = a(1,1); p_2(z)=z^2+z: coefficients = 1, 1 = a(1,2), a(2,2); p_3(z)=(z^2+z)^2+z=z+z^2+2z^3+z^4: coefficients = 1,1,2,1 = (1,3), a(2,3), a(3,3), a(4,3); ...
Triangle starts:
1,
1, 0,
1, 1, 0,
1, 1, 0, 0,
1, 1, 2, 0, 0,
1, 1, 2, 1, 0, 0,
1, 1, 2, 5, 0, 0, 0,
1, 1, 2, 5, 6, 0, 0, 0,
1, 1, 2, 5, 14, 6, 0, 0, 0,
1, 1, 2, 5, 14, 26, 4, 0, 0, 0,
1, 1, 2, 5, 14, 42, 44, 1, 0, 0, 0,
1, 1, 2, 5, 14, 42, 100, 69, 0, 0, 0, 0,
...
		

Crossrefs

Cf. A000108.
Cf. A137560, which gives the same array read by rows. [From Robert Munafo, Dec 12 2009]

Programs

  • Mathematica
    p[1, z_] := z; p[k_, z_] := p[k, z] = p[k-1, z]^2 + z; a[n_, k_] := Coefficient[p[k, z], z, n]; Flatten[ Table[a[n-k, k], {n, 1, 13}, {k, n-1, 1, -1}]] (* Jean-François Alcover, Jun 13 2012 *)

Formula

a(n, k+1)=sum(a(i, k)*a(n-i, k), i=1..n-1) for n=2..2^k, a(1, k)=1, a(n, k+1)=0 for n>2^k.
Showing 1-6 of 6 results.