A091980
Recursive sequence; one more than maximum of products of pairs of previous terms with indices summing to current index.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 16, 26, 36, 56, 81, 131, 183, 287, 417, 677, 937, 1457, 2107, 3407, 4759, 7463, 10843, 17603, 24373, 37913, 54838, 88688, 123892, 194300, 282310, 458330, 634350, 986390, 1426440, 2306540, 3221844, 5052452, 7340712, 11917232, 16500522
Offset: 1
- A. de Mier and M. Noy, On the maximum number of cycles in outerplanar and series-parallel graphs, Graphs Combin., 28 (2012), 265-275.
-
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f->
1+b(f)*b(n-1-f))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
a:= n-> b(n-1):
seq(a(n), n=1..50); # Alois P. Heinz, Jul 09 2019
-
a[n_] := a[n] = 1 + Max[Table[a[i] a[n-i], {i, n-1}]]; a[1] = 1;
Array[a, 50] (* Jean-François Alcover, Apr 30 2020 *)
A114220
a(n) = Sum_{k=0..floor(n/2)} (k - (k-1)*0^(n-2*k)).
Original entry on oeis.org
1, 0, 1, 1, 2, 3, 4, 6, 7, 10, 11, 15, 16, 21, 22, 28, 29, 36, 37, 45, 46, 55, 56, 66, 67, 78, 79, 91, 92, 105, 106, 120, 121, 136, 137, 153, 154, 171, 172, 190, 191, 210, 211, 231, 232, 253, 254, 276, 277, 300, 301, 325, 326, 351, 352, 378, 379, 406, 407, 435, 436
Offset: 0
-
[(2*n^2-2*n+7 + (9-2*n)*(-1)^n)/16: n in [0..80]]; // G. C. Greubel, Oct 21 2024
-
CoefficientList[Series[(1-x-x^2+2x^3)/((1-x)(1-x^2)^2), {x,0,80}],x] (* Harvey P. Dale, Mar 24 2011 *)
-
def A114220(n): return (2*n^2-2*n+7 + (9-2*n)*(-1)^n)//16
[A114220(n) for n in range(81)] # G. C. Greubel, Oct 21 2024
A137560
Let f(z) = z^2 + c, then row k lists the expansion of the n-fold composition f(f(...f(0)...)) in rising powers of c.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 5, 6, 6, 4, 1, 0, 1, 1, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1, 0, 1, 1, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788
Offset: 0
Triangle starts:
{1},
{0, 1},
{0, 1, 1},
{0, 1, 1, 2, 1},
{0, 1, 1, 2, 5, 6, 6, 4, 1},
{0, 1, 1, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},
{0, 1, 1, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
...
- Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer, New York, 1993, pp 128-129
- Alois P. Heinz, Rows n = 0..13, flattened (rows n=0..8 from Roger L. Bagula)
- Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Trans., Vol. 1, No. 1, Article 1 (July 2021).
- Robert Munafo, Lemniscates [From _Robert Munafo_, Oct 29 2009]
- Everything2 user ferrouslepidoptera, How many melodies are there in the universe? [From _Robert Munafo_, Oct 29 2009]
- Wikipedia, Mandelbrot set
A052154 gives the same array read by antidiagonals.
-
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
T:= n-> `if`(n=0, 1, (m-> (p-> seq(coeff(p, x, m-i),
i=-1..m))(b(m)))(2^(n-1)-1)):
seq(T(n), n=0..7); # Alois P. Heinz, Jul 11 2019
-
f[z_] = z^2 + x; g = Join[{1}, ExpandAll[NestList[f, x, 7]]]; a = Table[CoefficientList[g[[n]], x], {n, 1, Length[g]}]; Flatten[a] Table[Apply[Plus, CoefficientList[g[[n]], x]], {n, 1, Length[g]}];
-
p = vector(6); p[1] = x; for(n=2,6, p[n] = p[n-1]^2 + x); print1("1"); for(n=1,6, for(m=0,poldegree(p[n]), print1(", ",polcoeff(p[n],m)))) \\ Gerald McGarvey, Sep 26 2008
Offset set to 0 and new name from
Joerg Arndt, Jun 04 2016
A168542
Number of trees that have a maximum 'n'.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 5, 10, 10, 20, 25, 50, 52, 104, 130, 260, 260, 520, 650, 1300, 1352, 2704, 3380, 6760, 6770, 13540, 16925, 33850, 35204, 70408, 88010, 176020, 176020, 352040, 440050, 880100, 915304, 1830608, 2288260, 4576520, 4583290, 9166580, 11458225
Offset: 0
Endi Begeja (andy.bege(AT)libero.it), Nov 29 2009
-
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f->
1+b(f)*b(n-1-f))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
a:= n-> b(n)-`if`(n=0, 0, b(n-1)):
seq(a(n), n=0..45); # Alois P. Heinz, Jul 12 2019
-
a[ n_] := If[ n < 3, Boole[n > 0], With[{m = BitLength[Quotient[n, 3]] - 1}, Nest[#^2 + 1 &, 2, m] a[n - 2 2^m]]]; (* Michael Somos, Dec 20 2018 *)
-
{a(n) = if( n<3, n>0, my(m = #binary(n\3)-1, t = 2); for(i=1, m, t = t^2+1); t*a(n - 2*2^m))}; /* Michael Somos, Dec 20 2018 */
A309052
Total number of 1's in all (binary) max-heaps on n elements from the set {0,1}.
Original entry on oeis.org
0, 1, 3, 8, 15, 31, 54, 105, 166, 298, 478, 863, 1307, 2247, 3500, 6136, 9032, 15084, 23039, 39599, 57955, 96019, 145627, 248223, 357650, 583274, 875459, 1476754, 2131618, 3476550, 5210521, 8766473, 12498445, 20138409, 29952394, 50020414, 71658602, 115850282
Offset: 0
a(4) = 15 = 0+1+2+2+3+3+4, the total number of 1's in 0000, 1000, 1010, 1100, 1101, 1110, 1111.
-
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
1+x*b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
a:= n-> subs(x=1, diff(b(n), x)):
seq(a(n), n=0..40);
-
b[n_][x_] := b[n][x] = If[n == 0, 1, Function[g, Function[f, Expand[1 + x b[f][x] b[n - 1 - f][x]]][Min[g - 1, n - g/2]]][2^(Length[IntegerDigits[ n, 2]] - 1)]];
a[n_] := b[n]'[1];
a /@ Range[0, 40] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)
A024358
Sum of the sizes of binary subtrees of the perfect binary tree of height n.
Original entry on oeis.org
0, 1, 8, 105, 6136, 8766473, 8245941529080, 3508518207951157937469961, 311594265746788494170062926869662848646207622648, 1217308491239906829392988008143949647398943617188660186130545502913055217344025410733271773705
Offset: 0
-
B:= proc(n) B(n):= `if`(n<0, 0, expand(1+x*B(n-1)^2)) end:
a:= n-> subs(x=1, diff(B(n), x)):
seq(a(n), n=0..9); # Alois P. Heinz, Jul 12 2019
-
B[n_] := If[n<0, 0, Expand[1+x*B[n-1]^2]];
a[n_] := D[B[n], x] /. x -> 1;
Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Oct 13 2022, after Alois P. Heinz *)
A202019
Triangle by rows, related to the numbers of binary trees of height less than n, derived from the Mandelbrot set.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 4, 6, 6, 5, 2, 1, 1, 1, 8, 28, 60, 94, 116, 114, 94, 69, 44, 26, 14, 5, 2, 1, 1, 1, 16, 120, 568, 1932, 5096, 10948, 19788, 30782, 41944, 50788, 55308, 54746, 49700, 41658, 32398, 23461, 15864, 10068, 6036, 3434, 1860, 958, 470, 221, 100, 42, 14, 5, 2, 1, 1
Offset: 1
Row 4 = (1, 4, 6, 6, 5, 2, 1, 1) since (x^4 + 2x^3 + x^2 + x)^2 + x = x^8 + 4x^7 + 6x^6 + 6x^5 + 5x^4 + 2x^3 + x^2 + x.
Triangle begins:
1;
1, 1;
1, 2, 1, 1;
1, 4, 6, 6, 5, 2, 1, 1;
1, 8, 28, 60, 94, 116, 114, 94, 69, 44, 26, 14, 5, 2, 1, 1;
...
- Persi Diaconis & R. L. Graham, "Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks", Princeton University Press, 2012; pp. 73-83.
-
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2^(n-1)-1)):
seq(T(n), n=1..7); # Alois P. Heinz, Jul 11 2019
-
b[n_] := b[n] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f]*
b[n-1-f]]][Min[g-1, n-g/2]]][2^(Length[IntegerDigits[n, 2]]-1)]];
T[n_] := CoefficientList[b[2^(n-1)-1], x];
Array[T, 7] // Flatten (* Jean-François Alcover, Feb 19 2021, after Alois P. Heinz *)
A309051
Total number of 0's in all (binary) max-heaps on n elements from the set {0,1}.
Original entry on oeis.org
0, 1, 3, 7, 13, 24, 42, 77, 122, 206, 332, 578, 889, 1484, 2338, 4019, 5960, 9685, 14887, 25134, 37225, 60704, 92919, 156646, 227302, 364551, 550329, 917822, 1337358, 2158150, 3258779, 5441757, 7800755, 12412461, 18546566, 30708486, 44327782, 71090442
Offset: 0
a(4) = 13 = 4+3+2+2+1+1+0, the total number of 0's in 0000, 1000, 1010, 1100, 1101, 1110, 1111.
-
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
a:= n-> subs(x=1, diff(b(n), x)):
seq(a(n), n=0..40);
-
b[n_][x_] := b[n][x] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f][x] b[n - 1 - f][x]]][Min[g - 1, n - g/2]]][2^(Length[IntegerDigits[ n, 2]] - 1)]];
a[n_] := b[n]'[1];
a /@ Range[0, 40] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)
A309050
Number of (binary) max-heaps on 2n elements from the set {0,1} containing n 0's and n 1's.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 27, 54, 109, 219, 460, 962, 1986, 4044, 8516, 18058, 37801, 77701, 164300, 350336, 738945, 1530521, 3250659, 6962248, 14735660, 30625898, 65206770, 140040538, 297712980, 622136512, 1328716192, 2861101350, 6086238317, 12716525621, 27172910036
Offset: 0
a(0) = 1: ().
a(1) = 1: 10.
a(2) = 2: 1010, 1100.
a(3) = 4: 101001, 110010, 110100, 111000.
a(4) = 7: 10100110, 11010001, 11011000, 11100010, 11100100, 11101000, 11110000.
a(5) = 13: 1101000110, 1101100001, 1101100010, 1101100100, 1110011000, 1110100001, 1110101000, 1110110000, 1111000010, 1111000100, 1111001000, 1111010000, 1111100000.
-
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
a:= n-> coeff(b(2*n), x, n):
seq(a(n), n=0..40);
-
b[n_] := b[n] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f]*b[n - 1 - f]]][Min[g - 1, n - g/2]]][2^(Length@IntegerDigits[n, 2] - 1)]];
a[n_] := Coefficient[b[2n], x, n];
a /@ Range[0, 40] (* Jean-François Alcover, Apr 19 2021, after Alois P. Heinz *)
A326504
Number of (binary) max-heaps on n elements from the set {0,1} containing exactly three 0's.
Original entry on oeis.org
1, 1, 2, 4, 6, 8, 12, 16, 23, 27, 38, 44, 60, 66, 88, 96, 125, 133, 170, 180, 226, 236, 292, 304, 371, 383, 462, 476, 568, 582, 688, 704, 825, 841, 978, 996, 1150, 1168, 1340, 1360, 1551, 1571, 1782, 1804, 2036, 2058, 2312, 2336, 2613, 2637, 2938, 2964, 3290
Offset: 3
- Alois P. Heinz, Table of n, a(n) for n = 3..10000
- Eric Weisstein's World of Mathematics, Heap
- Wikipedia, Binary heap
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,0,0,-2,2,1,-1).
-
LinearRecurrence[{1,2,-2,0,0,-2,2,1,-1},{1,1,2,4,6,8,12,16,23},60] (* Harvey P. Dale, Mar 11 2023 *)
Showing 1-10 of 17 results.
Comments