A137636
a(n) = Sum_{k=0..n} C(2k+1,k)*C(2k+1,n-k) ; equals row 1 of square array A137634; also equals the convolution of A137635 and A073157.
Original entry on oeis.org
1, 4, 19, 94, 474, 2431, 12609, 65972, 347524, 1840680, 9792986, 52296799, 280163091, 1504969409, 8103433329, 43722788132, 236340999038, 1279602656590, 6938126362948, 37668424608552, 204751452911832, 1114151447523038
Offset: 0
-
{a(n)=sum(k=0,n,binomial(2*k+1,k)*binomial(2*k+1,n-k))} /* Using the g.f.: */ {a(n)=local(R=1/sqrt(1-4*x*(1+x +x*O(x^n))^2), G=(1-sqrt(1-4*x*(1+x)^2+x^2*O(x^n)))/(2*x*(1+x+x*O(x^n)))); polcoeff(R*G,n,x)}
A137637
a(n) = Sum_{k=0..n} C(2k+2,k)*C(2k+2,n-k) ; equals row 2 of square array A137634 ; also equals the convolution of A137635 and the self-convolution of A073157.
Original entry on oeis.org
1, 6, 32, 170, 899, 4764, 25318, 134964, 721562, 3868024, 20785035, 111931154, 603938905, 3264309644, 17671408012, 95800342628, 520022296700, 2826089180652, 15374990077568, 83727902852188, 456370687687082
Offset: 0
-
{a(n)=sum(k=0,n,binomial(2*k+2,k)*binomial(2*k+2,n-k))} /* Using the g.f.: */ {a(n)=local(R=1/sqrt(1-4*x*(1+x +x*O(x^n))^2), G=(1-sqrt(1-4*x*(1+x)^2+x^2*O(x^n)))/(2*x*(1+x+x*O(x^n)))); polcoeff(R*G^2,n,x)}
A360133
Expansion of 1/sqrt(1 - 4*x/(1+x)^3).
Original entry on oeis.org
1, 2, 0, -4, -4, 6, 18, 4, -48, -70, 60, 288, 170, -686, -1386, 432, 4928, 4806, -9684, -27572, -3672, 84106, 118162, -122388, -537834, -284830, 1386840, 2688944, -1103362, -10181934, -9354198, 21404728, 57921144, 3663942, -185437360, -248708676, 292137656
Offset: 0
-
a[n_]:=(-1)^(n+1)n(n+1)HypergeometricPFQ[{3/2,1-n,1+n/2,(3+n)/2}, {4/3,5/3,2}, 2^4/3^3]; Join[{1},Array[a,36]] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^3))
A361790
Expansion of 1/sqrt(1 - 4*x/(1+x)^4).
Original entry on oeis.org
1, 2, -2, -8, 6, 42, -8, -228, -90, 1210, 1238, -6116, -10864, 28574, 80932, -116248, -548010, 339678, 3455686, 173208, -20452674, -14036418, 113365140, 156407916, -580805472, -1312098918, 2659610562, 9621079540, -9902139124, -64566648122, 18521111032
Offset: 0
-
a[n_]:=(-1)^(n+1)Pochhammer[n,3]HypergeometricPFQ[{1-n,1+n/3,(4+n)/3, (5+n)/3}, {5/4,7/4,2}, 3^3/2^6]/3; Join[{1},Array[a,30]] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^4))
-
a(n)=sum(k=0, n, (-1)^(n-k) * binomial(2*k,k) * binomial(n+3*k-1,n-k)) \\ Winston de Greef, Mar 24 2023
A361791
Expansion of 1/sqrt(1 - 4*x/(1+x)^5).
Original entry on oeis.org
1, 2, -4, -10, 30, 72, -238, -580, 1970, 4910, -16734, -42750, 144600, 379000, -1264700, -3402480, 11160730, 30828070, -99168820, -281279030, 885931600, 2580541580, -7948885910, -23779051760, 71572652480, 219906488302, -646332447086, -2039738985238, 5850898295170
Offset: 0
-
a[n_]:=(-1)^(n+1)Pochhammer[n,4]HypergeometricPFQ[{3/2,1-n,1+n/4,(5+n)/4, (6+n)/4, (7+n)/4}, {6/5,7/5,8/5,9/5,2}, 2^10/5^5]/12; Join[{1},Array[a,28]] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^5))
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(2*k,k) * binomial(n+4*k-1,n-k)) \\ Winston de Greef, Mar 24 2023
A361792
Expansion of 1/sqrt(1 - 4*x/(1+x)^6).
Original entry on oeis.org
1, 2, -6, -10, 66, 60, -750, -236, 8682, -2098, -100792, 80286, 1162458, -1603412, -13225764, 26767020, 147428498, -409582818, -1596563202, 5941802122, 16587101544, -83014131140, -161717252990, 1126247965980, 1411774064970, -14905602076350
Offset: 0
-
a[n_]:=(-1)^(n+1)Pochhammer[n,5]HypergeometricPFQ[{1-n,1+n/5,(6+n)/5, (7+n)/5, (8+n)/5, (9+n)/5}, {7/6,4/3,5/3,11/6,2}, 5^5/(2^4*3^6)]/60; Join[{1},Array[a,25]] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^6))
A361812
Expansion of 1/sqrt(1 - 4*x*(1+x)^3).
Original entry on oeis.org
1, 2, 12, 62, 342, 1932, 11094, 64480, 378150, 2233304, 13263772, 79136844, 473969586, 2847911596, 17159547804, 103640073972, 627280131594, 3803643145596, 23102172930156, 140522319418164, 855880464524472, 5219168576004184, 31861229045809436
Offset: 0
-
a[n_]:=Binomial[2*n, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 1/2-n, 2/3-n}, -2^6/3^3]; Array[a,23,0] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^3))
A361815
Expansion of 1/sqrt(1 - 4*x*(1-x)^2).
Original entry on oeis.org
1, 2, 2, -2, -14, -32, -30, 64, 346, 752, 584, -2044, -9486, -19324, -11368, 66180, 271658, 514916, 192584, -2151612, -7949736, -13933280, -1779028, 69933368, 235295106, 378579404, -61171228, -2267724644, -7003832456, -10248117752, 5236354188, 73288104568
Offset: 0
A137634
Square array where T(n,k) = Sum_{j=0..k} C(n+2*j,j)*C(n+2*j,k-j), read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 4, 10, 1, 6, 19, 46, 1, 8, 32, 94, 226, 1, 10, 49, 170, 474, 1136, 1, 12, 70, 282, 899, 2431, 5810, 1, 14, 95, 438, 1577, 4764, 12609, 30080, 1, 16, 124, 646, 2600, 8701, 25318, 65972, 157162, 1, 18, 157, 914, 4076, 15000, 47682, 134964, 347524, 826992
Offset: 0
Square array begins:
1, 2, 10, 46, 226, 1136, 5810, 30080, 157162, ...;
1, 4, 19, 94, 474, 2431, 12609, 65972, 347524, ...;
1, 6, 32, 170, 899, 4764, 25318, 134964, 721562, ...;
1, 8, 49, 282, 1577, 8701, 47682, 260384, 1419436, ...;
1, 10, 70, 438, 2600, 15000, 85102, 477808, 2664539, ...;
1, 12, 95, 646, 4076, 24643, 145099, 839620, 4800849, ...;
1, 14, 124, 914, 6129, 38868, 237842, 1420660, 8342297, ...;
1, 16, 157, 1250, 8899, 59201, 376740, 2325088, 14036647, ...; ...
-
{T(n,k)=sum(j=0,k,binomial(n+2*j,j)*binomial(n+2*j,k-j))} /* Using the g.f.: */ {T(n,k)=local(Oy=y*O(y^(n+k))); polcoeff(polcoeff(1/sqrt(1-4*y*(1+y)^2+Oy)* 1/(1-x*((1-sqrt(1-4*y*(1+y)^2+Oy))/(2*y*(1 + y+Oy))+x*O(x^n))),n,x),k,y)}
A137638
Antidiagonal sums of square array A137634.
Original entry on oeis.org
1, 3, 15, 72, 361, 1840, 9505, 49578, 260540, 1377328, 7316373, 39020372, 208809544, 1120621368, 6029023185, 32507001876, 175604614108, 950233307930, 5149691511432, 27946158749572, 151843410356906, 825949622559366
Offset: 0
-
{a(n)=sum(k=0,n,sum(j=0,k,binomial(2*j+n-k,j)*binomial(2*j+n-k,k-j)))} /* Using the g.f.: */ {a(n)=local(G=sqrt(1 - 4*x*(1+x)^2 +x*O(x^n))); polcoeff(2*(1+x)/((1+2*x+G)*G),n)}
Showing 1-10 of 22 results.
Comments