cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A137636 a(n) = Sum_{k=0..n} C(2k+1,k)*C(2k+1,n-k) ; equals row 1 of square array A137634; also equals the convolution of A137635 and A073157.

Original entry on oeis.org

1, 4, 19, 94, 474, 2431, 12609, 65972, 347524, 1840680, 9792986, 52296799, 280163091, 1504969409, 8103433329, 43722788132, 236340999038, 1279602656590, 6938126362948, 37668424608552, 204751452911832, 1114151447523038
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,binomial(2*k+1,k)*binomial(2*k+1,n-k))} /* Using the g.f.: */ {a(n)=local(R=1/sqrt(1-4*x*(1+x +x*O(x^n))^2), G=(1-sqrt(1-4*x*(1+x)^2+x^2*O(x^n)))/(2*x*(1+x+x*O(x^n)))); polcoeff(R*G,n,x)}

Formula

G.f.: A(x) = R(x)*G(x), where R(x) = 1/sqrt(1-4x(1+x)^2) is the g.f. of A137635 and G(x) = (1-sqrt(1-4x(1+x)^2))/(2x(1+x)) is the g.f. of A073157.
D-finite with recurrence (n+1)*a(n) +(-3*n-1)*a(n-1) +2*(-6*n-1)*a(n-2) +2*(-6*n+1)*a(n-3) +2*(-2*n+1)*a(n-4)=0. - R. J. Mathar, Jun 23 2023
a(n) ~ sqrt((172 + (86*(78905 - 519*sqrt(129)))^(1/3) + (86*(78905 + 519*sqrt(129)))^(1/3))/129) * ((4 + (262 - 6*sqrt(129))^(1/3) + (2*(131 + 3*sqrt(129)))^(1/3))/3)^n / sqrt(Pi*n). - Vaclav Kotesovec, Nov 25 2023

A137637 a(n) = Sum_{k=0..n} C(2k+2,k)*C(2k+2,n-k) ; equals row 2 of square array A137634 ; also equals the convolution of A137635 and the self-convolution of A073157.

Original entry on oeis.org

1, 6, 32, 170, 899, 4764, 25318, 134964, 721562, 3868024, 20785035, 111931154, 603938905, 3264309644, 17671408012, 95800342628, 520022296700, 2826089180652, 15374990077568, 83727902852188, 456370687687082
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,binomial(2*k+2,k)*binomial(2*k+2,n-k))} /* Using the g.f.: */ {a(n)=local(R=1/sqrt(1-4*x*(1+x +x*O(x^n))^2), G=(1-sqrt(1-4*x*(1+x)^2+x^2*O(x^n)))/(2*x*(1+x+x*O(x^n)))); polcoeff(R*G^2,n,x)}

Formula

G.f.: A(x) = R(x)*G(x)^2, where R(x) = 1/sqrt(1-4*x*(1+x)^2) is the g.f. of A137635 and G(x) = (1-sqrt(1-4*x*(1+x)^2))/(2*x*(1+x)) is the g.f. of A073157.

A360133 Expansion of 1/sqrt(1 - 4*x/(1+x)^3).

Original entry on oeis.org

1, 2, 0, -4, -4, 6, 18, 4, -48, -70, 60, 288, 170, -686, -1386, 432, 4928, 4806, -9684, -27572, -3672, 84106, 118162, -122388, -537834, -284830, 1386840, 2688944, -1103362, -10181934, -9354198, 21404728, 57921144, 3663942, -185437360, -248708676, 292137656
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(-1)^(n+1)n(n+1)HypergeometricPFQ[{3/2,1-n,1+n/2,(3+n)/2}, {4/3,5/3,2}, 2^4/3^3]; Join[{1},Array[a,36]] (* Stefano Spezia, Jul 11 2024 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^3))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n+2*k-1,n-k).
n*a(n) = -( -2*a(n-1) + (2*n)*a(n-2) + 4*(n-3)*a(n-3) + (n-4)*a(n-4) ) for n > 3.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (-1)^(n-1-k) * (n+k) * binomial(n+1-k,2) * a(k).
a(n) = (-1)^(n+1)*n*(n + 1)*hypergeom([3/2, 1-n, 1+n/2, (3+n)/2], [4/3, 5/3, 2], 2^4/3^3) for n > 0. - Stefano Spezia, Jul 11 2024

A361790 Expansion of 1/sqrt(1 - 4*x/(1+x)^4).

Original entry on oeis.org

1, 2, -2, -8, 6, 42, -8, -228, -90, 1210, 1238, -6116, -10864, 28574, 80932, -116248, -548010, 339678, 3455686, 173208, -20452674, -14036418, 113365140, 156407916, -580805472, -1312098918, 2659610562, 9621079540, -9902139124, -64566648122, 18521111032
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(-1)^(n+1)Pochhammer[n,3]HypergeometricPFQ[{1-n,1+n/3,(4+n)/3, (5+n)/3}, {5/4,7/4,2}, 3^3/2^6]/3; Join[{1},Array[a,30]] (* Stefano Spezia, Jul 11 2024 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^4))
    
  • PARI
    a(n)=sum(k=0, n, (-1)^(n-k) * binomial(2*k,k) * binomial(n+3*k-1,n-k)) \\ Winston de Greef, Mar 24 2023

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n+3*k-1,n-k).
n*a(n) = -( (n-3)*a(n-1) + (6*n-6)*a(n-2) + 10*(n-3)*a(n-3) + 5*(n-4)*a(n-4) + (n-5)*a(n-5) ) for n > 4.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (-1)^(n-1-k) * (n+k) * binomial(n+2-k,3) * a(k).
a(n) = (-1)^(n+1)*Pochhammer(n,3)*hypergeom([1-n, 1+n/3, (4+n)/3, (5+n)/3], [5/4, 7/4, 2], 3^3/2^6)/3 for n > 0. - Stefano Spezia, Jul 11 2024

A361791 Expansion of 1/sqrt(1 - 4*x/(1+x)^5).

Original entry on oeis.org

1, 2, -4, -10, 30, 72, -238, -580, 1970, 4910, -16734, -42750, 144600, 379000, -1264700, -3402480, 11160730, 30828070, -99168820, -281279030, 885931600, 2580541580, -7948885910, -23779051760, 71572652480, 219906488302, -646332447086, -2039738985238, 5850898295170
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(-1)^(n+1)Pochhammer[n,4]HypergeometricPFQ[{3/2,1-n,1+n/4,(5+n)/4, (6+n)/4, (7+n)/4}, {6/5,7/5,8/5,9/5,2}, 2^10/5^5]/12; Join[{1},Array[a,28]] (* Stefano Spezia, Jul 11 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^5))
    
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(2*k,k) * binomial(n+4*k-1,n-k)) \\ Winston de Greef, Mar 24 2023

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n+4*k-1,n-k).
n*a(n) = -( (2*n-4)*a(n-1) + (11*n-14)*a(n-2) + 20*(n-3)*a(n-3) + 15*(n-4)*a(n-4) + 6*(n-5)*a(n-5) + (n-6)*a(n-6) ) for n > 5.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (-1)^(n-1-k) * (n+k) * binomial(n+3-k,4) * a(k).
a(n) = (-1)^(n+1)*Pochhammer(n,4)*hypergeom([3/2, 1-n, 1+n/4, (5+n)/4, (6+n)/4, (7+n)/4], [6/5, 7/5, 8/5, 9/5, 2], 2^10/5^5)/12 for n > 0. - Stefano Spezia, Jul 11 2024

A361792 Expansion of 1/sqrt(1 - 4*x/(1+x)^6).

Original entry on oeis.org

1, 2, -6, -10, 66, 60, -750, -236, 8682, -2098, -100792, 80286, 1162458, -1603412, -13225764, 26767020, 147428498, -409582818, -1596563202, 5941802122, 16587101544, -83014131140, -161717252990, 1126247965980, 1411774064970, -14905602076350
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(-1)^(n+1)Pochhammer[n,5]HypergeometricPFQ[{1-n,1+n/5,(6+n)/5, (7+n)/5, (8+n)/5, (9+n)/5}, {7/6,4/3,5/3,11/6,2}, 5^5/(2^4*3^6)]/60; Join[{1},Array[a,25]] (* Stefano Spezia, Jul 11 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^6))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n+5*k-1,n-k).
n*a(n) = -( (3*n-5)*a(n-1) + (17*n-24)*a(n-2) + 35*(n-3)*a(n-3) + 35*(n-4)*a(n-4) + 21*(n-5)*a(n-5) + 7*(n-6)*a(n-6) + (n-7)*a(n-7) ) for n > 6.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (-1)^(n-1-k) * (n+k) * binomial(n+4-k,5) * a(k).
a(n) = (-1)^(n+1)*Pochhammer(n,5)*hypergeom([1-n, 1+n/5, (6+n)/5, (7+n)/5, (8+n)/5, (9+n)/5], [7/6, 4/3, 5/3, 11/6, 2], 5^5/(2^4*3^6))/60 for n > 0. - Stefano Spezia, Jul 11 2024

A361812 Expansion of 1/sqrt(1 - 4*x*(1+x)^3).

Original entry on oeis.org

1, 2, 12, 62, 342, 1932, 11094, 64480, 378150, 2233304, 13263772, 79136844, 473969586, 2847911596, 17159547804, 103640073972, 627280131594, 3803643145596, 23102172930156, 140522319418164, 855880464524472, 5219168576004184, 31861229045809436
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Binomial[2*n, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 1/2-n, 2/3-n}, -2^6/3^3]; Array[a,23,0] (* Stefano Spezia, Jul 11 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^3))

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(3*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) + 3*(2*n-2)*a(n-2) + 3*(2*n-3)*a(n-3) + (2*n-4)*a(n-4) ) for n > 3.
a(n) = binomial(2*n, n)*hypergeom([(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4], [1/3-n, 1/2-n, 2/3-n], -2^6/3^3). - Stefano Spezia, Jul 11 2024

A361815 Expansion of 1/sqrt(1 - 4*x*(1-x)^2).

Original entry on oeis.org

1, 2, 2, -2, -14, -32, -30, 64, 346, 752, 584, -2044, -9486, -19324, -11368, 66180, 271658, 514916, 192584, -2151612, -7949736, -13933280, -1779028, 69933368, 235295106, 378579404, -61171228, -2267724644, -7003832456, -10248117752, 5236354188, 73288104568
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Comments

Diagonal of rational function 1/(1 - (1 - x*y) * (x + y)).

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^2))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(2*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 2*(2*n-2)*a(n-2) + (2*n-3)*a(n-3) ) for n > 2.

A137634 Square array where T(n,k) = Sum_{j=0..k} C(n+2*j,j)*C(n+2*j,k-j), read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 4, 10, 1, 6, 19, 46, 1, 8, 32, 94, 226, 1, 10, 49, 170, 474, 1136, 1, 12, 70, 282, 899, 2431, 5810, 1, 14, 95, 438, 1577, 4764, 12609, 30080, 1, 16, 124, 646, 2600, 8701, 25318, 65972, 157162, 1, 18, 157, 914, 4076, 15000, 47682, 134964, 347524, 826992
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2008

Keywords

Examples

			Square array begins:
1, 2, 10, 46, 226, 1136, 5810, 30080, 157162, ...;
1, 4, 19, 94, 474, 2431, 12609, 65972, 347524, ...;
1, 6, 32, 170, 899, 4764, 25318, 134964, 721562, ...;
1, 8, 49, 282, 1577, 8701, 47682, 260384, 1419436, ...;
1, 10, 70, 438, 2600, 15000, 85102, 477808, 2664539, ...;
1, 12, 95, 646, 4076, 24643, 145099, 839620, 4800849, ...;
1, 14, 124, 914, 6129, 38868, 237842, 1420660, 8342297, ...;
1, 16, 157, 1250, 8899, 59201, 376740, 2325088, 14036647, ...; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=sum(j=0,k,binomial(n+2*j,j)*binomial(n+2*j,k-j))} /* Using the g.f.: */ {T(n,k)=local(Oy=y*O(y^(n+k))); polcoeff(polcoeff(1/sqrt(1-4*y*(1+y)^2+Oy)* 1/(1-x*((1-sqrt(1-4*y*(1+y)^2+Oy))/(2*y*(1 + y+Oy))+x*O(x^n))),n,x),k,y)}

Formula

G.f.: A(x,y) = R(y)/(1 - x*G(y)), so that the g.f. of row n = R(y)*G(y)^n, where R(y) = 1/sqrt(1-4*y*(1+y)^2) and G(y) = (1-sqrt(1-4*y*(1+y)^2))/(2*y*(1+y)) is the g.f. of A073157.

A137638 Antidiagonal sums of square array A137634.

Original entry on oeis.org

1, 3, 15, 72, 361, 1840, 9505, 49578, 260540, 1377328, 7316373, 39020372, 208809544, 1120621368, 6029023185, 32507001876, 175604614108, 950233307930, 5149691511432, 27946158749572, 151843410356906, 825949622559366
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,sum(j=0,k,binomial(2*j+n-k,j)*binomial(2*j+n-k,k-j)))} /* Using the g.f.: */ {a(n)=local(G=sqrt(1 - 4*x*(1+x)^2 +x*O(x^n))); polcoeff(2*(1+x)/((1+2*x+G)*G),n)}

Formula

G.f.: A(x) = 2*(1+x)/((1+2*x + G(x))*G(x)) where G(x) = sqrt(1 - 4*x*(1+x)^2).
a(n) = Sum_{k=0..n} Sum_{j=0..k} C(n-k+2*j,j)*C(n-k+2*j,k-j).
D-finite with recurrence 2*(n+1)*a(n) +(-3*n-7)*a(n-1) +2*(-17*n+10)*a(n-2) +8*(-7*n+10)*a(n-3) +2*(-18*n+37)*a(n-4) +4*(-2*n+5)*a(n-5)=0. - R. J. Mathar, Jun 23 2023
Showing 1-10 of 22 results. Next