cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137742 a(n) = (n-1)*(n+4)*(n+6)/6 for n > 1, a(1)=1.

Original entry on oeis.org

1, 8, 21, 40, 66, 100, 143, 196, 260, 336, 425, 528, 646, 780, 931, 1100, 1288, 1496, 1725, 1976, 2250, 2548, 2871, 3220, 3596, 4000, 4433, 4896, 5390, 5916, 6475, 7068, 7696, 8360, 9061, 9800, 10578, 11396, 12255, 13156, 14100, 15088, 16121, 17200, 18326, 19500
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2008

Keywords

Comments

Also the number of different strings of length n+3 obtained from "123...n" by iteratively duplicating any substring (see A137743 for comments and examples). This is the principal (although not simplest) definition of this sequence and explains why a(1)=1 and not 0.
For n >= 3, sequence appears (not yet proved by induction) to give the number of multiplications between two nonzero matrix elements in calculating the product of two n X n Hessenberg matrices (square matrices which have 0's below the subdiagonal, other elements being in general nonzero). - John M. Coffey, Jun 21 2016

Examples

			a(5) = (5-1)*(5+4)*(5+6)/6 = 4*9*11/6 = 66. - _Michael B. Porter_, Jul 02 2016
		

Crossrefs

See A275874 for another version.

Programs

Formula

From Bruno Berselli, Aug 23 2011: (Start)
G.f.: x*(1+4*x-5*x^2+x^4)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(-n-7) = -A000297(n). (End)
From Ilya Gutkovskiy, Jul 01 2016: (Start)
E.g.f.: 4 + x + (-24 + 24*x + 12*x^2 + x^3)*exp(x)/6.
Sum_{n>=1} 1/a(n) = 1542/1225. (End)
a(n) = binomial(n+4,3) - 2*(n+4) for n > 1. - Michael Chu, Dec 09 2021