A135473 a(n) = number of strings of length n that can be obtained by starting with abc and repeatedly doubling any substring in place.
0, 0, 1, 3, 8, 21, 54, 138, 355, 924, 2432, 6461, 17301, 46657, 126656, 345972, 950611, 2626253, 7292268, 20342805, 56993909, 160317859, 452642235, 1282466920, 3645564511, 10395117584, 29727982740, 85251828792, 245120276345, 706529708510, 2041260301955, 5910531770835, 17149854645474, 49859456251401, 145223624492108, 423722038708874, 1238318400527185
Offset: 1
Keywords
Examples
n=3: abc n=4: aabc, abbc, abcc n=5: aaabc, abbbc, abccc, aabbc, aabcc, abbcc, ababc, abcbc
References
- D. P. Bovet and S. Varricchio, On the regularity of languages on a binary alphabet generated by copying systems, Information Processing Letters, 44 (1992), 119-123.
- Juergen Dassow, Victor Mitrana and Gheorghe Paun: On the Regularity of Duplication Closure. Bulletin of the EATCS 69 (1999), 133-136.
- Ming-wei Wang, On the Irregularity of the Duplication Closure, Bulletin of the EATCS, Vol. 70, 2000, 162-163.
Links
Crossrefs
Formula
Binomial transform of A135017. - Martin Fuller, Jun 06 2025
Empirically, grows like 3^n.
Extensions
a(19) - a(33) from David Applegate, Feb 12 2008
Extended to 37 terms by David Applegate, Feb 16 2008
Thanks to Robert Mercas and others for comments and references - N. J. A. Sloane, Apr 26 2013
Comments