cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A137742 a(n) = (n-1)*(n+4)*(n+6)/6 for n > 1, a(1)=1.

Original entry on oeis.org

1, 8, 21, 40, 66, 100, 143, 196, 260, 336, 425, 528, 646, 780, 931, 1100, 1288, 1496, 1725, 1976, 2250, 2548, 2871, 3220, 3596, 4000, 4433, 4896, 5390, 5916, 6475, 7068, 7696, 8360, 9061, 9800, 10578, 11396, 12255, 13156, 14100, 15088, 16121, 17200, 18326, 19500
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2008

Keywords

Comments

Also the number of different strings of length n+3 obtained from "123...n" by iteratively duplicating any substring (see A137743 for comments and examples). This is the principal (although not simplest) definition of this sequence and explains why a(1)=1 and not 0.
For n >= 3, sequence appears (not yet proved by induction) to give the number of multiplications between two nonzero matrix elements in calculating the product of two n X n Hessenberg matrices (square matrices which have 0's below the subdiagonal, other elements being in general nonzero). - John M. Coffey, Jun 21 2016

Examples

			a(5) = (5-1)*(5+4)*(5+6)/6 = 4*9*11/6 = 66. - _Michael B. Porter_, Jul 02 2016
		

Crossrefs

See A275874 for another version.

Programs

Formula

From Bruno Berselli, Aug 23 2011: (Start)
G.f.: x*(1+4*x-5*x^2+x^4)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(-n-7) = -A000297(n). (End)
From Ilya Gutkovskiy, Jul 01 2016: (Start)
E.g.f.: 4 + x + (-24 + 24*x + 12*x^2 + x^3)*exp(x)/6.
Sum_{n>=1} 1/a(n) = 1542/1225. (End)
a(n) = binomial(n+4,3) - 2*(n+4) for n > 1. - Michael Chu, Dec 09 2021

A323221 a(n) = n*(n + 5)*(n + 7)/6 + 1.

Original entry on oeis.org

1, 9, 22, 41, 67, 101, 144, 197, 261, 337, 426, 529, 647, 781, 932, 1101, 1289, 1497, 1726, 1977, 2251, 2549, 2872, 3221, 3597, 4001, 4434, 4897, 5391, 5917, 6476, 7069, 7697, 8361, 9062, 9801, 10579, 11397, 12256, 13157, 14101, 15089, 16122, 17201, 18327, 19501
Offset: 0

Views

Author

Peter Luschny, Jan 25 2019

Keywords

Comments

a(n) is related to the total angular defect of certain polytopes. See Hilton and Pedersen, Cor. 1; compare A275874.

Examples

			For n = 2 the sum formula gives:
I(2) = {{0,0}, {0,1}, {1,0}, {0,2}, {1,1}, {2,0}, {0,3}, {1,2}, {2,1}, {3,0}};
a(2) = 1 + 1 + 1 + 2 + 1 + 2 + 5 + 2 + 2 + 5 = 22.
		

Crossrefs

Çf. A323224 (column 4), A323233 (row 4), A034856 (first difference), A275874.

Programs

  • Maple
    a := n -> n*(35 + 12*n + n^2)/6 + 1:
    seq(a(n), n = 0..45);
  • Mathematica
    a[n_] := n (35 + 12 n + n^2)/6 + 1;
    Table[a[n], {n, 0, 45}]

Formula

Let I(n) denote the set of all tuples of length n with elements from {0, 1, 2, 3} with sum <= 3 and C(m) denote the m-th Catalan number. Then for n > 0
a(n) = Sum_{(j1,...,jn) in I(n)} C(j1)*C(j2)*...*C(jn).
a(n) = [x^n] (3*x^3 - 8*x^2 + 5*x + 1)/(x - 1)^4.
a(n) = n! [x^n] exp(x)*(x^3 + 15*x^2 + 48*x + 6)/6.
a(n) = a(n - 1)*(n*(n + 5)*(n + 7) + 6)/(n*(n + 2)*(n + 7) - 18) for n > 0.
a(n) = A323224(n, 4).
a(n) = A275874(n+4) + 1.

A347171 Triangle read by rows where T(n,k) is the sum of Golay-Rudin-Shapiro terms GRS(j) (A020985) for j in the range 0 <= j < 2^n and having binary weight wt(j) = A000120(j) = k.

Original entry on oeis.org

1, 1, 1, 1, 2, -1, 1, 3, -1, 1, 1, 4, 0, 0, -1, 1, 5, 2, -2, 1, 1, 1, 6, 5, -4, 3, -2, -1, 1, 7, 9, -5, 3, -3, 3, 1, 1, 8, 14, -4, 0, 0, 2, -4, -1, 1, 9, 20, 0, -6, 6, -4, 0, 5, 1, 1, 10, 27, 8, -14, 12, -10, 8, -3, -6, -1, 1, 11, 35, 21, -22, 14, -10, 10, -11, 7, 7, 1
Offset: 0

Views

Author

Kevin Ryde, Aug 21 2021

Keywords

Comments

Doche and Mendès France form polynomials P_n(y) = Sum_{j=0..2^n-1} GRS(j) * y^wt(j) and here row n is the coefficients of P_n starting from the constant term, so P_n(y) = Sum_{k=0..n} T(n,k)*y^k. They conjecture that the number of real roots of P_n is A285869(n).
Row sum n is the sum of GRS terms from j = 0 to 2^n-1 inclusive, which Brillhart and Morton (Beispiel 6 page 129) show is A020986(2^n-1) = 2^ceiling(n/2) = A060546(n). The same follows by substituting y=1 in the P_n recurrence or the generating function.

Examples

			Triangle begins
        k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7
  n=0:   1
  n=1:   1,  1
  n=2:   1,  2, -1
  n=3:   1,  3, -1,  1
  n=4:   1,  4,  0,  0, -1
  n=5:   1,  5,  2, -2,  1,  1
  n=6:   1,  6,  5, -4,  3, -2, -1
  n=7:   1,  7,  9, -5,  3, -3,  3,  1
For T(5,3), those j in the range 0 <= j < 2^5 with wt(j) = 3 are
  j      =  7 11 13 14 19 21 22 25 26 28
  GRS(j) = +1 -1 -1 +1 -1 +1 -1 -1 -1 +1 total -2 = T(5,3)
		

Crossrefs

Cf. A020985 (GRS), A020986 (GRS partial sums), A000120 (binary weight), A285869.
Columns k=0..3: A000012, A001477, A000096, A275874.
Cf. A165326 (main diagonal), A248157 (second diagonal negated).
Cf. A060546 (row sums), A104969 (row sums squared terms).
Cf. A329301 (antidiagonal sums).
Cf. A104967 (rows reversed, up to signs).

Programs

  • PARI
    my(M=Mod('x, 'x^2-(1-'y)*'x-2*'y)); row(n) = Vecrev(subst(lift(M^n),'x,'y+1));

Formula

T(n,k) = T(n-1,k) - T(n-1,k-1) + 2*T(n-2,k-1) for n>=2, and taking T(n,k)=0 if k<0 or k>n.
T(n,k) = (-1)^k * A104967(n,n-k).
Row polynomial P_n(y) = (1-y)*P_{n-1}(y) + 2*y*P_{n-2}(y) for n>=2. [Doche and Mendès France]
G.f.: (1 + 2*x*y)/(1 + x*(y-1) - 2*x^2*y).
Column g.f.: C_k(x) = 1/(1-x) for k=0 and C_k(x) = x^k * (2*x-1)^(k-1) / (1-x)^(k+1) for k>=1.
Showing 1-3 of 3 results.