A121370 Least number k such that (k*M(n))^2 + k*M(n) - 1 is prime with M(i)=i-th Mersenne prime.
1, 3, 1, 7, 8, 19, 13, 4, 16, 3, 42, 24, 434, 84, 160, 579, 475, 529, 2450, 2644, 3928, 558, 13680, 7146, 1408, 3003, 2369, 55000, 83873
Offset: 1
Examples
M(4)=2^7-1=127 127^2+127-1=16255 composite (2*127)^2+2*127-1=64769 composite (3*127)^2+3*127-1=145541 composite (4*127)^2+4*127-1=258571 composite (5*127)^2+5*127-1=403859 composite (6*127)^2+6*127-1=581405 composite (7*127)^2+7*127-1=791209 prime so k(4)=7 1*(2^2-1)*(1*(2^2-1)+1)-1=11 prime, 2^2-1 first Mersenne prime, a(1)=1. 3*(2^3-1)*(3*(2^3-1)+1)-1=461 prime, 2^3-1 second Mersenne prime, a(2)=3. n=6: Mp(6) = 131071 and 19*131071*(19*131071 + 1) - 1 = 6201840632149 which is prime, and for k=1..18 no prime appears. - _Wolfdieter Lang_, Oct 26 2014
Crossrefs
Programs
-
PARI
lista() = {v = readvec("b000043.txt"); for (i=1, #v, mp = 2^v[i] - 1; k=1; while (!isprime(k*mp*(k*mp + 1) - 1), k++); print1(k, ", "););} \\ Michel Marcus, Oct 27 2014
Formula
a(n) is the least k >= 1 for which k*Mp(n)*(k*Mp(n) + 1) - 1 is prime, where Mp(n) = A000668(n) (see Name). - Wolfdieter Lang, Oct 26 2014
Extensions
a(21) corrected by Pierre CAMI, Mar 04 2014
a(27)-a(29) by Pierre CAMI, Oct 11 2014
Checked for n = 1..15 by Wolfdieter Lang, Oct 26 2014
Merged with A137908 by Vaclav Kotesovec, Oct 30 2014
Comments