cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A137953 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^2)^3.

Original entry on oeis.org

1, 1, 3, 9, 34, 132, 546, 2327, 10191, 45534, 206788, 951723, 4429182, 20808186, 98550468, 470038119, 2255684699, 10883852112, 52769785320, 256960840946, 1256147650818, 6162349332204, 30328107189312, 149698391878458
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[3*(n-k), k]/(n-k)*Binomial[2*k, n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec after Paul D. Hanna, Mar 25 2014 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^2)^3);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(3*(n-k),k)/(n-k)*binomial(2*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^3 where B(x) is the g.f. of A137952.
a(n) = Sum_{k=0..n-1} C(3*(n-k),k)/(n-k) * C(2*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
Recurrence: 5*n*(5*n-3)*(5*n-2)*(5*n+1)*(5*n+4)*(2948400*n^11 - 80922240*n^10 + 991552680*n^9 - 7191167904*n^8 + 34388915791*n^7 - 113938412552*n^6 + 266574560812*n^5 - 439214051186*n^4 + 497527715029*n^3 - 367402366838*n^2 + 158427508008*n - 30063700800)*a(n) = -240*(5*n-1)*(3402000*n^13 - 102564900*n^12 + 1682146080*n^11 - 16176231033*n^10 + 95359496344*n^9 - 359981654612*n^8 + 893831335718*n^7 - 1468770570635*n^6 + 1566970769558*n^5 - 1019176919948*n^4 + 331927521052*n^3 + 34505928*n^2 - 32180612832*n + 6541274880)*a(n-1) + 180*(884520000*n^16 - 26930232000*n^15 + 372745486800*n^14 - 3118060887120*n^13 + 17644263763548*n^12 - 71507400823524*n^11 + 214013670957835*n^10 - 480132169105811*n^9 + 810380315383846*n^8 - 1022562903644722*n^7 + 947982058983979*n^6 - 624324084479227*n^5 + 273663045967416*n^4 - 68343334466444*n^3 + 4273926176256*n^2 + 2065304121408*n - 381518968320)*a(n-2) + 72*(5890903200*n^16 - 188191699920*n^15 + 2743292998800*n^14 - 24248455085592*n^13 + 145518104758338*n^12 - 628264374415281*n^11 + 2014705595228766*n^10 - 4876859081303636*n^9 + 8950855221646414*n^8 - 12378944029917433*n^7 + 12665670452628658*n^6 - 9249292270917382*n^5 + 4496305419163048*n^4 - 1229711760456116*n^3 + 68797455703176*n^2 + 53468550934560*n - 10544040864000)*a(n-3) + 72*(5731689600*n^16 - 191702972160*n^15 + 2927459413440*n^14 - 27105381081216*n^13 + 170350803352728*n^12 - 770345146059408*n^11 + 2589617705669352*n^10 - 6581794624393248*n^9 + 12710327685293639*n^8 - 18531898603387194*n^7 + 20012311600272546*n^6 - 15421584075698196*n^5 + 7904537517669183*n^4 - 2290793383663938*n^3 + 159318295564312*n^2 + 94065554487360*n - 19593691084800)*a(n-4) + 72*(2*n-9)*(3*n-11)*(3*n-7)*(6*n-25)*(6*n-23)*(2948400*n^11 - 48489840*n^10 + 344492280*n^9 - 1422208584*n^8 + 3817772239*n^7 - 6909787807*n^6 + 8311308487*n^5 - 6272196721*n^4 + 2621759746*n^3 - 403021048*n^2 - 67705152*n + 22579200)*a(n-5). - Vaclav Kotesovec, Mar 25 2014
a(n) ~ sqrt(3*s*(s-1)*(3*s-2)/(5*s-3)) / (2*sqrt(Pi)*n^(3/2)*r^n), where s = 1.7888356349988794022183... is the root of the equation 216*(s-1)^2 = s*(5*s-6)^4, and r = 1/(s*(5*s-6)) = 0.189873988477346598... - Vaclav Kotesovec, Mar 25 2014

A137955 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^4)^2.

Original entry on oeis.org

1, 1, 2, 9, 36, 172, 842, 4310, 22676, 121896, 666884, 3699973, 20771096, 117765084, 673367034, 3878538930, 22483446152, 131070712924, 767929882240, 4519387797894, 26704456819984, 158367557278412, 942285096541344, 5623496055739052, 33653373190735484
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[2*(n-k),k]/(n-k)*Binomial[4*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^4)^2);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(2*(n-k),k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^2 where B(x) is the g.f. of A137956.
a(n) = Sum_{k=0..n-1} C(2*(n-k),k)/(n-k) * C(4*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(2*s*(1-s)*(4-5*s) / ((56*s - 48)*Pi)) / (n^(3/2) * r^n), where r = 0.1569043698639381952962655091205241634381480571697... and s = 1.444765371242615455251538467189577278901629278244... are real roots of the system of equations s = 1 + r*(1 + r*s^4)^2, 8 * r^2 * s^3 * (1 + r*s^4) = 1. - Vaclav Kotesovec, Nov 22 2017

A137967 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^2.

Original entry on oeis.org

1, 1, 2, 13, 66, 406, 2602, 17271, 118444, 829514, 5914980, 42791085, 313277294, 2316793170, 17281455882, 129867946828, 982293317064, 7472406051744, 57132051350160, 438797394096378, 3383870656327576, 26191385476141936
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^2);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(2*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^2 where B(x) is the g.f. of A137968.
a(n) = Sum_{k=0..n-1} C(2*(n-k),k)/(n-k) * C(6*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(2*s*(1-s)*(6-7*s) / ((132*s - 120)*Pi)) / (n^(3/2) * r^n), where r = 0.1201742080825038015263858974579392344239858277873... and s = 1.297009871974239150024579315539982910111693413337... are real roots of the system of equations s = 1 + r*(1 + r*s^6)^2, 12 * r^2 * s^5 * (1 + r*s^6) = 1. - Vaclav Kotesovec, Nov 22 2017

A137960 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^5)^2.

Original entry on oeis.org

1, 1, 2, 11, 50, 275, 1560, 9212, 56082, 348675, 2207120, 14171155, 92075064, 604266000, 3999688050, 26670727220, 178997024610, 1208160130227, 8195828345756, 55849242272130, 382119958804520, 2624041637846210
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5)^2);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(2*(n-k),k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^2 where B(x) is the g.f. of A137961.
a(n) = Sum_{k=0..n-1} C(2*(n-k),k)/(n-k) * C(5*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(2*s*(1-s)*(5-6*s) / ((90*s - 80)*Pi)) / (n^(3/2) * r^n), where r = 0.1354712934479194768810666044866029126617104117352... and s = 1.354660923650925199331121807468321286698258863972... are real roots of the system of equations s = 1 + r*(1 + r*s^5)^2, 10 * r^2 * s^4 * (1 + r*s^5) = 1. - Vaclav Kotesovec, Nov 22 2017

A365131 G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^3)^2.

Original entry on oeis.org

1, 2, 11, 62, 395, 2662, 18720, 135738, 1007607, 7619456, 58488028, 454556544, 3569655975, 28282204680, 225796917864, 1814732935968, 14670580718486, 119215212413412, 973246346463636, 7978384233270126, 65649676250344747, 542031604244083664
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=2) = sum(k=0, n, binomial(t*(n+1), k)*binomial(s*k, n-k))/(n+1);

Formula

If g.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(s*k,n-k).

A367283 G.f. satisfies A(x) = 1 + x*A(x)^2 * (1 + x*A(x)^3)^2.

Original entry on oeis.org

1, 1, 4, 20, 116, 728, 4818, 33100, 233824, 1687764, 12393520, 92291681, 695325926, 5290359124, 40591599128, 313725215636, 2440203573816, 19087022233906, 150042056387660, 1184734863936672, 9392213303130904, 74728563957003952, 596531545003840160
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=2, u=3) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t * (1 + x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(s*k,n-k) / (t*k+u*(n-k)+1).
Showing 1-6 of 6 results.