cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A137954 G.f. satisfies A(x) = 1 + x + x^2*A(x)^4.

Original entry on oeis.org

1, 1, 1, 4, 10, 32, 107, 360, 1270, 4544, 16537, 61092, 228084, 860056, 3269994, 12521488, 48250690, 186959312, 727989318, 2847167632, 11179394088, 44053232012, 174160578150, 690576010820, 2745713062854, 10944253432600
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-k,k]/(n-k)*Binomial[4*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x+x^2*A^4);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-k,k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

a(n) = Sum_{k=0..n-1} C(n-k,k)/(n-k) * C(4*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
Recurrence: 3*(n-1)*n*(3*n-8)*(3*n-5)*(3*n-2)*(3*n+2)*a(n) = 64*(n-1)^2*(2*n-3)*(2*n-1)*(3*n-8)*(3*n-5)*a(n-2) + 32*(2*n-3)*(3*n-8)*(36*n^4 - 204*n^3 + 364*n^2 - 216*n + 35)*a(n-3) + 16*(3*n-2)*(144*n^5 - 1536*n^4 + 6005*n^3 - 10278*n^2 + 6790*n - 600)*a(n-4) + 8*n*(2*n-7)*(3*n-5)*(3*n-2)*(4*n-19)*(4*n-9)*a(n-5). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ sqrt(s*(1-s)*(4-5*s) / ((24*s - 24)*Pi)) / (n^(3/2) * r^n), where r = 0.2362629484147719796376166796890824064312524895955... and s = 1.648350597886362639516822239585443208575003319460... are real roots of the system of equations s = 1 + r*(1 + r*s^4), 4 * r^2 * s^3 = 1. - Vaclav Kotesovec, Nov 22 2017

A137957 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^4)^3.

Original entry on oeis.org

1, 1, 3, 15, 79, 468, 2895, 18670, 123765, 838860, 5785503, 40473729, 286504086, 2048388112, 14770313397, 107290913232, 784380664232, 5766985753620, 42614014459911, 316304429143995, 2357275139670183, 17631888703154172
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[3*(n-k),k]/(n-k)*Binomial[4*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Nov 22 2017 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^4)^3);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(3*(n-k),k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^3 where B(x) is the g.f. of A137958.
a(n) = Sum_{k=0..n-1} C(3*(n-k),k)/(n-k) * C(4*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(3*s*(1-s)*(4-5*s) / ((88*s - 72)*Pi)) / (n^(3/2) * r^n), where r = 0.1243879037293364492255197677726812528516871521834... and s = 1.373172215091866448521512759142574301075022413158... are real roots of the system of equations s = 1 + r*(1 + r*s^4)^3, 12 * r^2 * s^3 * (1 + r*s^4)^2 = 1. - Vaclav Kotesovec, Nov 22 2017

A137952 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^2.

Original entry on oeis.org

1, 1, 2, 7, 24, 95, 386, 1641, 7150, 31844, 144216, 662228, 3076044, 14427582, 68235078, 325049475, 1558212804, 7511319253, 36387218312, 177050945886, 864912345340, 4240388439744, 20857232340528, 102896737106415
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Binomial[2*(n-k),k]/(n-k) * Binomial[3*k,n-k-1], {k,0,n-1}], {n,1,30}]}] (* Vaclav Kotesovec, Nov 18 2017 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^3)^2);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(2*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^2 where B(x) is the g.f. of A137953.
a(n) = Sum_{k=0..n-1} C(2*(n-k),k)/(n-k) * C(3*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
Recurrence: 5*n*(5*n - 4)*(5*n - 3)*(5*n - 1)*(5*n + 3)*(8845200*n^11 - 252428400*n^10 + 3221192232*n^9 - 24137808840*n^8 + 117463352781*n^7 - 387964460127*n^6 + 882822962553*n^5 - 1374856808005*n^4 + 1422227015434*n^3 - 915895407668*n^2 + 320324023880*n - 42693386400)*a(n) = - 360*(5*n - 2)*(5670000*n^13 - 63714600*n^12 - 1032645960*n^11 + 24848001198*n^10 - 218480624507*n^9 + 1101741928166*n^8 - 3582401014336*n^7 + 7865579681092*n^6 - 11836392808433*n^5 + 12130520012664*n^4 - 8236278842764*n^3 + 3497924862840*n^2 - 827741189520*n + 81691545600)*a(n-1) + 180*(2653560000*n^16 - 86342760000*n^15 + 1284348733200*n^14 - 11544882534000*n^13 + 69915022739748*n^12 - 301277354913324*n^11 + 951521048997123*n^10 - 2235356609743737*n^9 + 3921814538564296*n^8 - 5108337175422974*n^7 + 4854490688899951*n^6 - 3250616687965913*n^5 + 1431302003002666*n^4 - 349408874612852*n^3 + 16089460853736*n^2 + 12240998632800*n - 2031289747200)*a(n-2) + 72*(17672709600*n^16 - 601551846000*n^15 + 9383367519936*n^14 - 88661500185240*n^13 + 565349613141438*n^12 - 2565633937621131*n^11 + 8513410651166583*n^10 - 20875837005697545*n^9 + 37705724089968084*n^8 - 49181218885648923*n^7 + 44098626888119141*n^6 - 23771481353637565*n^5 + 3467317211974378*n^4 + 4824415011450004*n^3 - 3654086377331160*n^2 + 1070168332564800*n - 116760296016000)*a(n-3) + 144*(8597534400*n^16 - 305543145600*n^15 + 4975684360704*n^14 - 49077873815616*n^13 + 326509076764188*n^12 - 1543742190898488*n^11 + 5321067950386782*n^10 - 13479709842928188*n^9 + 24903384308348709*n^8 - 32579354322085314*n^7 + 27941366702438094*n^6 - 11913061039189846*n^5 - 3157851308946897*n^4 + 7647346836930652*n^3 - 4534021704525180*n^2 + 1245319349576400*n - 132684717816000)*a(n-4) + 72*(2*n - 7)*(3*n - 14)*(3*n - 10)*(6*n - 25)*(6*n - 23)*(8845200*n^11 - 155131200*n^10 + 1183394232*n^9 - 5046898752*n^8 + 12951310413*n^7 - 19922972292*n^6 + 16394061984*n^5 - 2858995378*n^4 - 7011543813*n^3 + 6369403462*n^2 - 2180183136*n + 267092640)*a(n-5). - Vaclav Kotesovec, Nov 18 2017
a(n) ~ sqrt((1 + 4*r*s^3 + 3*r^2*s^6) / (3*Pi*s*(2 + 5*r*s^3))) / (2*n^(3/2) * r^(n + 1/2)), where r = 0.1898739884773465982357897900946346962414966313829... and s = 1.607584028097173055359903977736399386285943742600... are roots of the system of equations 1 + r*(1 + r*s^3)^2 = s, 6*r^2*s^2*(1 + r*s^3) = 1. - Vaclav Kotesovec, Nov 18 2017

A137962 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^5)^3.

Original entry on oeis.org

1, 1, 3, 18, 106, 720, 5085, 37493, 284331, 2204973, 17404720, 139369905, 1129411314, 9244823986, 76326154857, 634847759955, 5314684735045, 44746683774474, 378652035541761, 3218705637379698, 27471657413667780
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5)^3);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(3*(n-k),k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^3 where B(x) is the g.f. of A137963.
a(n) = Sum_{k=0..n-1} C(3*(n-k),k)/(n-k) * C(5*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(3*s*(1-s)*(5-6*s) / ((140*s - 120)*Pi)) / (n^(3/2) * r^n), where r = 0.1085884782751570249717333800652227343328635496829... and s = 1.301018963559115613510052458264916439485131890857... are real roots of the system of equations s = 1 + r*(1 + r*s^5)^3, 15 * r^2 * s^4 * (1 + r*s^5)^2 = 1. - Vaclav Kotesovec, Nov 22 2017

A137969 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^3.

Original entry on oeis.org

1, 1, 3, 21, 136, 1032, 8139, 66975, 567417, 4915386, 43350639, 387889254, 3512655498, 32133132074, 296496163113, 2756279003712, 25790064341592, 242699145598212, 2295564345035100, 21811226043019788, 208084639385653938
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^3);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(3*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^3 where B(x) is the g.f. of A137970.
a(n) = Sum_{k=0..n-1} C(3*(n-k),k)/(n-k) * C(6*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(3*s*(1-s)*(6-7*s) / ((204*s - 180)*Pi)) / (n^(3/2) * r^n), where r = 0.0971328555591006631243189792661187629516513365080... and s = 1.254068189138542668013320901661524162625316815207... are real roots of the system of equations s = 1 + r*(1 + r*s^6)^3, 18 * r^2 * s^5 * (1 + r*s^6)^2 = 1. - Vaclav Kotesovec, Nov 22 2017

A367261 G.f. satisfies A(x) = 1 + x*A(x) * (1 + x*A(x)^2)^3.

Original entry on oeis.org

1, 1, 4, 16, 77, 393, 2113, 11761, 67217, 392140, 2325691, 13980390, 84990482, 521623164, 3227679457, 20114056545, 126125100615, 795207084713, 5038166859565, 32059491655921, 204806561028553, 1313023485343009, 8445060537757367, 54476991669555231
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=1, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t * (1 + x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(s*k,n-k) / (t*k+u*(n-k)+1).

A365130 G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^2)^3.

Original entry on oeis.org

1, 3, 18, 124, 945, 7650, 64592, 562419, 5013645, 45530725, 419735784, 3917714430, 36949853641, 351597275136, 3371317098546, 32542166997655, 315962469096855, 3083729075615055, 30236064140642514, 297698542934231016, 2942082095638037148
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=3) = sum(k=0, n, binomial(t*(n+1), k)*binomial(s*k, n-k))/(n+1);

Formula

If g.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(s*k,n-k).

A367285 G.f. satisfies A(x) = 1 + x*A(x)^2 * (1 + x*A(x)^2)^3.

Original entry on oeis.org

1, 1, 5, 26, 159, 1042, 7185, 51340, 376806, 2823734, 21516113, 166196703, 1298413089, 10241803340, 81454834164, 652465062453, 5259084437170, 42624217133130, 347160390473763, 2839928983316595, 23323730673818467, 192237734035157372, 1589602164422747636
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=2, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t * (1 + x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(s*k,n-k) / (t*k+u*(n-k)+1).
Showing 1-8 of 8 results.