A137954
G.f. satisfies A(x) = 1 + x + x^2*A(x)^4.
Original entry on oeis.org
1, 1, 1, 4, 10, 32, 107, 360, 1270, 4544, 16537, 61092, 228084, 860056, 3269994, 12521488, 48250690, 186959312, 727989318, 2847167632, 11179394088, 44053232012, 174160578150, 690576010820, 2745713062854, 10944253432600
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[n-k,k]/(n-k)*Binomial[4*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x+x^2*A^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-k,k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137957
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^4)^3.
Original entry on oeis.org
1, 1, 3, 15, 79, 468, 2895, 18670, 123765, 838860, 5785503, 40473729, 286504086, 2048388112, 14770313397, 107290913232, 784380664232, 5766985753620, 42614014459911, 316304429143995, 2357275139670183, 17631888703154172
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[3*(n-k),k]/(n-k)*Binomial[4*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Nov 22 2017 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^4)^3);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(3*(n-k),k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137952
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^2.
Original entry on oeis.org
1, 1, 2, 7, 24, 95, 386, 1641, 7150, 31844, 144216, 662228, 3076044, 14427582, 68235078, 325049475, 1558212804, 7511319253, 36387218312, 177050945886, 864912345340, 4240388439744, 20857232340528, 102896737106415
Offset: 0
-
Flatten[{1, Table[Sum[Binomial[2*(n-k),k]/(n-k) * Binomial[3*k,n-k-1], {k,0,n-1}], {n,1,30}]}] (* Vaclav Kotesovec, Nov 18 2017 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^3)^2);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(2*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137962
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^5)^3.
Original entry on oeis.org
1, 1, 3, 18, 106, 720, 5085, 37493, 284331, 2204973, 17404720, 139369905, 1129411314, 9244823986, 76326154857, 634847759955, 5314684735045, 44746683774474, 378652035541761, 3218705637379698, 27471657413667780
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5)^3);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(3*(n-k),k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137969
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^3.
Original entry on oeis.org
1, 1, 3, 21, 136, 1032, 8139, 66975, 567417, 4915386, 43350639, 387889254, 3512655498, 32133132074, 296496163113, 2756279003712, 25790064341592, 242699145598212, 2295564345035100, 21811226043019788, 208084639385653938
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^3);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(3*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A367261
G.f. satisfies A(x) = 1 + x*A(x) * (1 + x*A(x)^2)^3.
Original entry on oeis.org
1, 1, 4, 16, 77, 393, 2113, 11761, 67217, 392140, 2325691, 13980390, 84990482, 521623164, 3227679457, 20114056545, 126125100615, 795207084713, 5038166859565, 32059491655921, 204806561028553, 1313023485343009, 8445060537757367, 54476991669555231
Offset: 0
-
a(n, s=3, t=1, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));
A365130
G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^2)^3.
Original entry on oeis.org
1, 3, 18, 124, 945, 7650, 64592, 562419, 5013645, 45530725, 419735784, 3917714430, 36949853641, 351597275136, 3371317098546, 32542166997655, 315962469096855, 3083729075615055, 30236064140642514, 297698542934231016, 2942082095638037148
Offset: 0
-
a(n, s=2, t=3) = sum(k=0, n, binomial(t*(n+1), k)*binomial(s*k, n-k))/(n+1);
A367285
G.f. satisfies A(x) = 1 + x*A(x)^2 * (1 + x*A(x)^2)^3.
Original entry on oeis.org
1, 1, 5, 26, 159, 1042, 7185, 51340, 376806, 2823734, 21516113, 166196703, 1298413089, 10241803340, 81454834164, 652465062453, 5259084437170, 42624217133130, 347160390473763, 2839928983316595, 23323730673818467, 192237734035157372, 1589602164422747636
Offset: 0
-
a(n, s=3, t=2, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));
Showing 1-8 of 8 results.