cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138010 a(n) is the number of positive divisors of n that divide d(n), where d(n) is the number of positive divisors of n, A000005(n); a(n) also equals d(gcd(n, d(n))).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 2, 1, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4
Offset: 1

Views

Author

Leroy Quet, Feb 27 2008

Keywords

Examples

			12 has 6 divisors (1,2,3,4,6,12). Those divisors of 12 that divide 6 are 1,2,3,6. Since there are 4 of these, then a(12) = 4.
		

Crossrefs

Programs

  • Magma
    [#Divisors( Gcd(n,#Divisors(n))):n in [1..120]]; // Marius A. Burtea, Aug 03 2019
  • Maple
    with(numtheory): a:=proc(n) local div,c,j: div:=divisors(n): c:=0: for j to tau(n) do if `mod`(tau(n), div[j])=0 then c:=c+1 else end if end do: c end proc: seq(a(n),n=1..90); # Emeric Deutsch, Mar 02 2008
  • Mathematica
    Table[Length[Select[Divisors[n], Mod[Length[Divisors[n]], # ] == 0 &]], {n,1,100}] (* Stefan Steinerberger, Feb 29 2008 *)
    Table[Count[DivisorSigma[0,n]/Divisors[n],?IntegerQ],{n,120}] (* _Harvey P. Dale, May 31 2019 *)
  • PARI
    A138010(n) = sumdiv(n,d,if(!(numdiv(n)%d), 1, 0)); \\ Antti Karttunen, May 25 2017
    
  • Python
    from sympy import divisors, divisor_count
    def a(n): return sum([ 1*(divisor_count(n)%d==0) for d in divisors(n)]) # Indranil Ghosh, May 25 2017
    
  • Scheme
    (define (A138010 n) (A000005 (gcd n (A000005 n)))) ;; Antti Karttunen, May 25 2017
    

Formula

a(n) = A000005(A009191(n)). [From the alternative description.] - Antti Karttunen, May 25 2017

Extensions

More terms from Stefan Steinerberger and Emeric Deutsch, Feb 29 2008
Further extended (to 120 terms) by Antti Karttunen, May 25 2017