cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138137 First differences of A006128.

Original entry on oeis.org

1, 2, 3, 6, 8, 15, 19, 32, 42, 64, 83, 124, 157, 224, 288, 395, 502, 679, 854, 1132, 1422, 1847, 2307, 2968, 3677, 4671, 5772, 7251, 8908, 11110, 13572, 16792, 20439, 25096, 30414, 37138, 44798, 54389, 65386, 78959, 94558, 113687, 135646, 162375, 193133
Offset: 1

Views

Author

Omar E. Pol, Mar 18 2008

Keywords

Comments

Number of parts in the last section of the set of partitions of n (see A135010, A138121).
Sum of largest parts in all partitions in the head of the last section of the set of partitions of n. - Omar E. Pol, Nov 07 2011
From Omar E. Pol, Feb 16 2021: (Start)
Convolution of A341062 and A000041.
Convolution of A000005 and A002865.
a(n) is also the total number of parts in the n-th section of the set of partitions of any positive integer >= n.
a(n) is also the total number of divisors of all terms in the n-th row of triangle A336811. These divisors are also all parts in the last section of the set of partitions of n. (End)

Examples

			From _Omar E. Pol_, Feb 19 2012: (Start)
Illustration of initial terms (n = 1..6) as sums of the first columns from the last sections of the first six natural numbers (or from the first six sections of 6):
.                                           6
.                                           3+3
.                                           4+2
.                                           2+2+2
.                              5              1
.                              3+2              1
.                    4           1              1
.                    2+2           1              1
.            3         1           1              1
.      2       1         1           1              1
.  1     1       1         1           1              1
. --- ----- ------- --------- ----------- --------------
.  1,  2,    3,      6,        8,          15,
...
Also, we can see that the sequence gives the number of parts in each section. For the number of odd/even parts (and more) see A207031, A207032 and also A206563. (End)
From _Omar E. Pol_, Aug 16 2013: (Start)
The geometric model looks like this:
.                                           _ _ _ _ _ _
.                                          |_ _ _ _ _ _|
.                                          |_ _ _|_ _ _|
.                                          |_ _ _ _|_ _|
.                               _ _ _ _ _  |_ _|_ _|_ _|
.                              |_ _ _ _ _|           |_|
.                     _ _ _ _  |_ _ _|_ _|           |_|
.                    |_ _ _ _|         |_|           |_|
.             _ _ _  |_ _|_ _|         |_|           |_|
.       _ _  |_ _ _|       |_|         |_|           |_|
.   _  |_ _|     |_|       |_|         |_|           |_|
.  |_|   |_|     |_|       |_|         |_|           |_|
.
.   1    2      3        6          8           15
.
(End)
On the other hand for n = 6 the 6th row of triangle A336811 is [6, 4, 3, 2, 2, 1, 1] and the divisors of these terms are [1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1]. There are 15 divisors so a(6) = 15. - _Omar E. Pol_, Jul 27 2021
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, 0]
        elif i<1 then [0, 0]
        elif i>n then b(n, i-1)
        else f:= b(n, i-1); g:= b(n-i, i);
             [f[1]+g[1], f[2]+g[2] +g[1]]
          fi
        end:
    a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 19 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, f = b[n, i-1]; g = b[n-i, i]; {f[[1]]+g[[1]], f[[2]]+g[[2]]+g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    Table[PartitionsP[n - 1] + Length@Flatten@Select[IntegerPartitions[n], FreeQ[#, 1] &], {n, 1, 45}] (* Robert Price, May 01 2020 *)

Formula

a(n) = A006128(n) - A006128(n-1).
a(n) = A000041(n-1) + A138135(n). - Omar E. Pol, Nov 07 2011
a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(6*n/Pi^2)) / (8*sqrt(3)*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 21 2016
G.f.: Sum_{i>=1} i*x^i * Product_{j=2..i} 1/(1 - x^j). - Ilya Gutkovskiy, Apr 04 2017