A138148 Cyclops numbers with binary digits only.
0, 101, 11011, 1110111, 111101111, 11111011111, 1111110111111, 111111101111111, 11111111011111111, 1111111110111111111, 111111111101111111111, 11111111111011111111111, 1111111111110111111111111, 111111111111101111111111111, 11111111111111011111111111111
Offset: 0
Examples
n ........ a(n) .... A129868(n): value of a(n) read in base 2. 0 ......... 0 ......... 0 1 ........ 101 ........ 5 2 ....... 11011 ....... 27 3 ...... 1110111 ...... 119 4 ..... 111101111 ..... 495 5 .... 11111011111 .... 2015 6 ... 1111110111111 ... 8127
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Gennady Eremin, Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant, arXiv:2405.16143 [math.CO], 2024. See pp. 9, 14.
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video, video (2015).
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index to Elementary Cellular Automata
- Index entries for sequences related to cellular automata
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Magma
[(-1 - 9*10^n + 10^(1 + 2*n))/9 : n in [0..15]]; // Wesley Ivan Hurt, Dec 08 2015
-
Maple
A138148:=n->(-1-9*10^n+10^(1+2*n))/9: seq(A138148(n), n=0..15); # Wesley Ivan Hurt, Dec 08 2015
-
Mathematica
Table[(-1 - 9*10^n + 10^(1 + 2*n))/9, {n, 0, 15}] (* Wesley Ivan Hurt, Dec 08 2015 *)
-
PARI
for(n=1, 20, if(n%2==1, c=((10^n-1)/9)-10^((n-1)/2); print1(c, ", "))) \\ Felix Fröhlich, Jul 07 2014
-
PARI
apply( {A138148(n)=10^(n*2+1)\9-10^n}, [0..15]) \\ M. F. Hasler, Feb 08 2020
Formula
From Colin Barker, Feb 21 2013: (Start)
a(n) = (-1-9*10^n+10^(1+2*n))/9.
G.f.: x*(200*x-101) / ((x-1)*(10*x-1)*(100*x-1)). (End)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2. - Wesley Ivan Hurt, Dec 08 2015
E.g.f.: (-1 - 9*exp(9*x) + 10*exp(99*x))*exp(x)/9. - Ilya Gutkovskiy, May 12 2016
Extensions
More terms from Omar E. Pol, Feb 09 2020
Comments