A138172 Even n where d(n) < d(n+1), where d(n) = number of positive divisors of n.
62, 74, 134, 146, 164, 188, 194, 206, 254, 274, 278, 284, 314, 356, 362, 386, 398, 404, 422, 428, 454, 458, 482, 494, 524, 538, 554, 566, 584, 614, 626, 662, 674, 692, 734, 746, 758, 764, 794, 818, 824, 854, 866, 890, 914, 926, 934, 944, 956, 974, 998, 1004, 1028
Offset: 1
Keywords
Links
- Jianing Song and Muniru A Asiru, Table of n, a(n) for n = 1..10000(Terms 1 through 1019 from Jianing Song)
Programs
-
GAP
Filtered([2,4..1300],n->Tau(n)
Muniru A Asiru, Apr 05 2018 -
Maple
with(numtheory): A138172:=n->`if`(n mod 2 = 0 and tau(n) < tau(n+1), n, NULL): seq(A138172(n), n=1..1000); # Wesley Ivan Hurt, Apr 10 2015
-
Mathematica
2 Position[Partition[Array[DivisorSigma[0, #] &, 10^3, 2], 2, 2], ?(#1 < #2 & @@ # &)][[All, 1]] (* _Michael De Vlieger, Apr 07 2018 *)
-
PARI
lista(nn) = {forstep(n=2, nn, 2, if (numdiv(n) < numdiv(n+1), print1(n, ", ")););} \\ Michel Marcus, Apr 10 2015
Comments