cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A138171 Odd n where d(n) > d(n+1), where d(n) = number of positive divisors of n.

Original entry on oeis.org

45, 81, 105, 117, 165, 225, 261, 273, 297, 315, 325, 333, 345, 357, 385, 405, 435, 441, 465, 477, 495, 513, 525, 555, 561, 567, 585, 595, 621, 625, 627, 651, 675, 693, 705, 715, 765, 777, 795, 801, 825, 837, 855, 861, 885, 891, 897, 915, 925, 945, 957, 975
Offset: 1

Views

Author

Leroy Quet, Mar 03 2008

Keywords

Comments

Terms calculated by M. F. Hasler.
First term == 5 (mod 6) is a(385) = 6125. - Jianing Song, Apr 03 2018

Crossrefs

Programs

  • GAP
    Filtered([1,3..1301],n->Tau(n)>Tau(n+1)); # Muniru A Asiru, Apr 05 2018
  • Maple
    with(numtheory): a:=proc(n) if tau(2*n)Emeric Deutsch, Mar 12 2008
    with(numtheory): a:=proc (n) if `mod`(n,2)=1 and tau(n+1) < tau(n) then n else end if end proc: seq(a(n), n=1..1000); # Emeric Deutsch, Mar 31 2008
  • Mathematica
    Select[Range[1,1001,2],DivisorSigma[0,#]>DivisorSigma[0,#+1]&] (* Harvey P. Dale, Jul 08 2017 *)
    Select[Flatten[Position[Partition[DivisorSigma[0,Range[1000]],2,1],?(#[[1]]>#[[2]]&),1,Heads->False]],OddQ] (* _Harvey P. Dale, Apr 20 2025 *)
  • PARI
    isok(n) = (n%2) && (numdiv(n) > numdiv(n+1)); \\ Michel Marcus, Apr 04 2018
    
  • PARI
    lista(nn) = forstep(n=1, nn, 2, if(numdiv(n) > numdiv(n+1), print1(n, ", "))); \\ Altug Alkan, Apr 04 2018
    

A323379 Odd k such that d(k-1) < d(k) and d(k) > d(k+1), d = A000005.

Original entry on oeis.org

165, 315, 357, 405, 495, 525, 555, 567, 585, 627, 675, 693, 765, 795, 825, 855, 891, 915, 945, 957, 975, 1005, 1053, 1071, 1125, 1155, 1173, 1305, 1323, 1365, 1395, 1425, 1485, 1515, 1575, 1617, 1677, 1683, 1725, 1755, 1785, 1815, 1827, 1845, 1911, 1965, 1995
Offset: 1

Views

Author

Jianing Song, Jan 12 2019

Keywords

Comments

Numbers k such that k is in A138171 and that k-1 is in A138172.
It's often the case that an odd number has fewer divisors than at least one of its adjacent even numbers. This sequence lists the exceptions.
Most terms are congruent to 3 modulo 6. The smallest term congruent to 1 modulo 6 is 2275, and the smallest term congruent to 5 modulo 6 is 6125.

Examples

			d(314) = 4, d(315) = 12, d(316) = 6, so 315 is a term.
		

Crossrefs

Intersection of A075027 and A005408.
Similar sequences: A076773, A323380.

Programs

  • Maple
    q:= k-> k::odd and (d-> d(k-1)d(k+1))(numtheory[tau]):
    select(q, [$1..2000])[];  # Alois P. Heinz, Sep 28 2021
  • Mathematica
    Select[Range[3, 2001, 2], (d = DivisorSigma[0, #] & /@ (# + Range[-1,1]))[[2]] > d[[1]] && d[[2]] > d[[3]] &] (* Amiram Eldar, Jul 22 2019 *)
  • PARI
    forstep(n=3,2000,2,if(numdiv(n)>numdiv(n-1)&&numdiv(n)>numdiv(n+1), print1(n, ", ")))
Showing 1-2 of 2 results.