cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A137576 a(n) = A002326(n) * A006694(n) + 1.

Original entry on oeis.org

1, 3, 5, 7, 13, 11, 13, 17, 17, 19, 31, 23, 41, 55, 29, 31, 41, 61, 37, 49, 41, 43, 85, 47, 85, 57, 53, 81, 73, 59, 61, 73, 73, 67, 111, 71, 73, 141, 151, 79, 217, 83, 89, 113, 89, 109, 131, 145, 97, 211, 101, 103, 169, 107, 109, 145, 113, 221, 133, 193, 221, 141, 301, 127
Offset: 0

Views

Author

Vladimir Shevelev, Apr 26 2008, Apr 28 2008, May 03 2008, Jun 12 2008

Keywords

Comments

Composite numbers n for which a((n-1)/2)=n are called overpseudoprimes to base 2 (A141232).
Theorem. If p and q are odd primes then the equality a((pq-1)/2)=pq is valid if and only if A002326((p-1)/2)=A002326((q-1)/2). Example: A002326(11) = A002326(44). Since 23 and 89 are primes then a((23*89-1)/2)=23*89.
A generalization: If p_1A002326((p_1-1)/2)= A002326((p_2-1)/2)=...=A002326((p_m-1)/2).
Moreover, if n is an odd squarefree number and a((n-1)/2)=n then also all divisors d of n satisfy a((d-1)/2)=d and d divides 2^d-2. Thus the sequence of such n is a subsequence of A050217.

Crossrefs

Programs

  • Mathematica
    a[n_] := (t = MultiplicativeOrder[2, 2n+1])*DivisorSum[2n+1, EulerPhi[#] / MultiplicativeOrder[2, #]&]-t+1; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
  • PARI
    a(n)=my(t);sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1 \\ Charles R Greathouse IV, Feb 20 2013

Formula

It can be shown that if p is an odd prime then a((p^k-1)/2)=1+k*phi(p^k).
a(n) = ord(2,2*n+1) * ((Sum_{d|(2n+1)} phi(d)/ord(2,d)) - 1) + 1, where phi = A000010 and ord(2,d) is the multiplicative order of 2 modulo d. - Jianing Song, Nov 13 2021

Extensions

Edited and extended by Ray Chandler, May 08 2008

A138786 "Left" odd composite numbers n for which n < A140607((n-1)/2).

Original entry on oeis.org

9, 21, 25, 27, 35, 45, 49, 55, 69, 75, 77, 81, 93, 95, 99, 105, 115, 119, 121, 125, 133, 135, 141, 143, 147, 153, 155, 161, 165, 169, 175, 187, 189, 203, 207, 209, 213, 215, 217, 219, 221, 225, 231, 235, 237, 243, 245, 247, 253, 259, 261, 267, 279, 285, 287
Offset: 1

Views

Author

Vladimir Shevelev, May 18 2008

Keywords

Comments

There are odd composite numbers which are neither in this sequence nor in A140608. The first such number is 91, see A140667.

Crossrefs

Extensions

Extended by Ray Chandler, May 20 2008

A140607 (A039649(2n+1)+A137576(n))/2.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 13, 17, 19, 22, 23, 31, 37, 29, 31, 31, 43, 37, 37, 41, 43, 55, 47, 64, 45, 53, 61, 55, 59, 61, 55, 61, 67, 78, 71, 73, 91, 106, 79, 136, 83, 77, 85, 89, 91, 96, 109, 97, 136, 101, 103, 109, 107, 109, 109, 113, 155, 103, 145, 166, 111, 201, 127, 113
Offset: 1

Views

Author

Vladimir Shevelev, May 18 2008

Keywords

Comments

If 2n+1 is a prime then a(n) = 2n+1.

Crossrefs

Extensions

Extended by Ray Chandler, May 20 2008, May 24 2008

A140608 "Right" odd composite numbers n for which n > A140607((n-1)/2).

Original entry on oeis.org

15, 33, 39, 51, 57, 63, 65, 85, 87, 111, 117, 123, 129, 145, 159, 171, 177, 183, 185, 195, 201, 205, 249, 255, 265, 273, 275, 291, 303, 305, 315, 321, 327, 333, 339, 341, 393, 399, 411, 417, 435, 447, 451, 455, 465, 471, 481, 485, 489, 505, 511, 513, 519, 537
Offset: 1

Views

Author

Vladimir Shevelev, May 18 2008

Keywords

Comments

Conjecture. The sequence is infinite.

Crossrefs

Extensions

Extended by Ray Chandler, May 20 2008

A140667 Odd composite numbers k for which k = A140607((k-1)/2).

Original entry on oeis.org

91, 1581, 2465, 8481, 25761, 31609, 33355, 34945, 118405, 146611, 319507, 736291, 994507, 3270403, 3375487, 5176153, 6186403, 6228685, 8650951, 10679131, 22028203, 26017291, 31470211, 33796531, 41710411, 42149971, 42474547, 46672291, 48316969, 49019851, 58986091, 68182003, 69885649
Offset: 1

Views

Author

Ray Chandler, May 20 2008

Keywords

Crossrefs

Programs

  • PARI
    f(n) = (eulerphi(2*n+1) + 1 + g(n))/2; \\ A140607
    g(n) = sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1; \\ A137576
    isok(c) = if (!isprime(c) && (c%2), f((c-1)/2) == c); \\ Michel Marcus, Jan 31 2023

Extensions

More terms from Michel Marcus, Jan 31 2023
Showing 1-5 of 5 results.