A367720
E.g.f. satisfies A(x) = exp(x*A(x^4)).
Original entry on oeis.org
1, 1, 1, 1, 1, 121, 721, 2521, 6721, 196561, 3659041, 29993041, 159762241, 1686639241, 60298558321, 987112886761, 9315623640961, 76611297104161, 2454331471018561, 69805324167893281, 1086439146068753281, 62621251106366355481, 1358219171406244427281
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, (i-1)\4, (4*j+1)*v[j+1]*v[i-4*j]/(j!*(i-1-4*j)!))); v;
A143566
E.g.f. satisfies A(x) = exp(x*A(x^2/2!)).
Original entry on oeis.org
1, 1, 1, 4, 13, 46, 241, 1471, 9409, 67348, 564841, 4771801, 45459481, 463867834, 5060656693, 58878140686, 730612429681, 9556314730456, 131627520296929, 1912237000523623, 29032781640572881, 462811831018070206, 7687624300327129621, 133275225843052767244
Offset: 0
-
A:= proc(n) option remember; if n<=0 then 1 else unapply(convert(
series(exp(x*A(n-2)(x^2/2)), x,n+1), polynom),x) fi
end:
a:= n-> coeff(A(n)(x), x,n)*n!:
seq(a(n), n=0..28);
-
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^2/2]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
A367719
E.g.f. satisfies A(x) = exp(x*A(x^3)).
Original entry on oeis.org
1, 1, 1, 1, 25, 121, 361, 3361, 42001, 275185, 1819441, 30777121, 371238121, 9284332201, 131442054745, 1454933712961, 34120902859681, 851562584890081, 12300037440760801, 187928965721651905, 6019555345508794681, 130768735411230580441
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, (i-1)\3, (3*j+1)*v[j+1]*v[i-3*j]/(j!*(i-1-3*j)!))); v;
A367747
E.g.f. satisfies A(x) = exp(x * (1 + x) * A(x^2)).
Original entry on oeis.org
1, 1, 3, 13, 73, 561, 4771, 49813, 562353, 7340833, 102829411, 1627648221, 27294311353, 502042022353, 9759264753603, 205434011254501, 4544894700204001, 107346788357502273, 2657668122191037763, 69701762677026498733, 1909106308252976007081
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, i-1, (j+1)*v[j\2+1]*v[i-j]/((j\2)!*(i-1-j)!))); v;
A294638
E.g.f. satisfies: A'(x) = A(x) * A(x^2).
Original entry on oeis.org
1, 1, 1, 3, 9, 33, 153, 963, 6129, 47457, 393489, 3689379, 36673209, 410924097, 4810169961, 64694478627, 878318278497, 13230037503297, 203967546446241, 3494178651687363, 60117798742663401, 1137159539308348641, 21683284489630748601, 452680959717183978243, 9454328250188008785489, 214087305044257976127393, 4862802200825123466537393, 119970186740330465448543843, 2944202974922987534742898329
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 33*x^5/5! + 153*x^6/6! + 963*x^7/7! + 6129*x^8/8! + 47457*x^9/9! + 393489*x^10/10! + 3689379*x^11/11! + 36673209*x^12/12! + 410924097*x^13/13! + 4810169961*x^14/14! + 64694478627*x^15/15! + 878318278497*x^16/16! + 13230037503297*x^17/17! + 203967546446241*x^18/18! + 3494178651687363*x^19/19! + ...
such that A'(x) = A(x) * A(x^2).
Also, A(x) = exp( Integral A(x^2) dx ).
RELATED SERIES.
The logarithm of the e.g.f. is an odd function that begins:
log(A(x)) = x + x^3/3 + x^5/(5*2!) + 3*x^7/(7*3!) + 9*x^9/(9*4!) + 33*x^11/(11*5!) + 153*x^13/(13*6!) + 963*x^15/(15*7!) + 6129*x^17/(17*8!) + 47457*x^19/(19*9!) + 393489*x^21/(21*10!) +...+ a(n) * x^(2*n+1)/((2*n+1)*n!) +...
which equals Integral A(x^2) dx.
Explicitly,
log(A(x)) = x + 2*x^3/3! + 12*x^5/5! + 360*x^7/7! + 15120*x^9/9! + 997920*x^11/11! + 101787840*x^13/13! + 16657280640*x^15/15! + 3180450873600*x^17/17! + 837294557299200*x^19/19! +...+ (2*n)!/n! * a(n) * x^(2*n+1)/(2*n+1)! +...
-
{a(n) = my(A=1); for(i=1,#binary(n+1), A = exp( intformal( subst(A,x,x^2) +x*O(x^n)) ) ); n!*polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A367721
E.g.f. satisfies A(x) = exp(x*A(-x^2)).
Original entry on oeis.org
1, 1, 1, -5, -23, 1, 601, 7771, 26545, -401183, -6965999, -42828389, 528611161, 15543020065, 141983039017, -2393449681349, -83586615493919, -708151768946879, 15447932991283105, 635290179334026427, 7146984268771158601, -162583738763505944639
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, (i-1)\2, (-1)^j*(2*j+1)*v[j+1]*v[i-2*j]/(j!*(i-1-2*j)!))); v;
A138738
E.g.f. satisfies: A(x) = exp(x*exp(x^2*exp(x^3*exp(...exp(x^n*...))))).
Original entry on oeis.org
1, 1, 1, 7, 25, 121, 1561, 9871, 101137, 1293265, 15765841, 226501111, 3355388521, 55348183177, 981791212585, 19611613003711, 387083895223201, 8241127257050401, 193814428658623777, 4572332597344204135, 116627907470591924281, 3142752742361513926681
Offset: 0
E.g.f: A(x) = 1 + x + 1/2*x^2 + 7/6*x^3 + 25/24*x^4 + 121/120*x^5 +...
-
{a(n)=local(A=1); for(i=0, n-1, A=exp(x^(n-i)*A+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
Showing 1-7 of 7 results.
Comments