A138364 The number of Motzkin n-paths with exactly one flat step.
0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, 462, 0, 1716, 0, 6435, 0, 24310, 0, 92378, 0, 352716, 0, 1352078, 0, 5200300, 0, 20058300, 0, 77558760, 0, 300540195, 0, 1166803110, 0, 4537567650, 0, 17672631900, 0, 68923264410, 0, 269128937220, 0
Offset: 0
Examples
a(5)=10 since the coefficient of z^5 in I_1(2z) is binomial(5,3)=10.
References
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Ch. 49, Hemisphere Publishing Corp., 1999.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic Curves, L-Polynomials, and Random Matrices. In: Arithmetic, Geometry, Cryptography, and Coding Theory: International Conference, November 5-9, 2007, CIRM, Marseilles, France. (Contemporary Mathematics; v.487)
Programs
-
Magma
&cat[[0, Binomial(n, (n+1) div 2)]: n in [1..50 by 2]]; // Vincenzo Librandi, Apr 20 2015
-
Mathematica
a[ n_] := SeriesCoefficient[ n! BesselI[ 1, 2 x], {x, 0, n}]; (* Michael Somos, Mar 19 2014 *)
-
PARI
x='x+O('x^66); concat([0], Vec( -(sqrt(1-4*x^2)+2*x^2-1) / (x*sqrt(1-4*x^2)+4*x^3-x))) \\ Joerg Arndt, May 08 2013
-
Python
from math import comb def A138364(n): return comb(n,n>>1) if n&1 else 0 # Chai Wah Wu, Aug 25 2025
-
Sage
def A138364(n): if is_even(n): return 0 return binomial(n,n//2) [A138364(n) for n in (0..42)] # Peter Luschny, Mar 18 2014
Formula
a(n) = binomial(n,(n+1)/2) for n odd, 0 otherwise.
E.g.f.: I_1(2z), where I_1 is the hyperbolic Bessel function of order 1.
a(n) = (1/(2*Pi))*integral(x=-2..2, x^n*x/sqrt((2+x)*(2-x))). - Peter Luschny, Sep 12 2011
G.f.: -(sqrt(1-4*x^2)+2*x^2-1)/(x*sqrt(1-4*x^2)+4*x^3-x). - Vladimir Kruchinin, Mar 08 2013
G.f.: z*C(z^2)/(1-2*z^2*C(z^2)), where C(z) is the g.f. of Catalan numbers. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) = Integral_[-Pi,Pi] cos^(n+1)/(2^(n-1)*Pi). - M. F. Hasler, Jul 12 2018
Extensions
New name is a comment by David Scambler, May 02 2013. - Peter Luschny, Mar 18 2014
Comments