cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138587 The union of all entries of A024495, A131708 and A024493 sorted into natural order.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 10, 11, 21, 22, 42, 43, 85, 86, 170, 171, 341, 342, 682, 683, 1365, 1366, 2730, 2731, 5461, 5462, 10922, 10923, 21845, 21846, 43690, 43691, 87381, 87382, 174762, 174763, 349525, 349526, 699050, 699051, 1398101, 1398102, 2796202, 2796203, 5592405
Offset: 0

Views

Author

Paul Curtz, May 13 2008

Keywords

Comments

The three sequences of the definition share the same special recurrence which reflects that each equals its own sequence of third differences.

Programs

  • Mathematica
    CoefficientList[Series[x*(3*x + 4*x^2 + 5*x^3 + 4*x^4 + 2*x^5 + 1)/((1 + x)*(1 - 2*x^2)*(1 + x^2)), {x,0,50}], x] (* G. C. Greubel, Oct 03 2017 *)
    LinearRecurrence[{-1,1,1,2,2},{0,1,2,3,5,6,10},50] (* Harvey P. Dale, Feb 18 2023 *)
  • PARI
    x='x+O('x^50); concat(0, Vec(x*(3*x+4*x^2+5*x^3+4*x^4 +2*x^5+ 1)/((1+x)*(1-2*x^2)*(1+x^2)))) \\ G. C. Greubel, Oct 03 2017

Formula

a(n+8) == a(n) (mod 10), n > 1.
a(2*n+1) - a(2*n) = 1.
a(2*n) = A000975(n+1), n>0 (bisection).
From R. J. Mathar, Nov 22 2009: (Start)
a(n) = -a(n-1) +a(n-2) +a(n-3) +2*a(n-4) +2*a(n-5), n>6.
G.f.: x*(3*x+4*x^2+5*x^3+4*x^4+2*x^5+1)/((1+x)*(1-2*x^2)*(1+x^2)). (End)

Extensions

Edited and extended by R. J. Mathar, Nov 22 2009