A138696 Primes p such that 30*p-1, 30*p+1 and 36*p-1, 36*p+1 are twin primes.
2, 5, 457, 1013, 2683, 5413, 46307, 51287, 67433, 99223, 116443, 146603, 149837, 159017, 172373, 181277, 187987, 199523, 248477, 249503, 259163, 278903, 279337, 286333, 293893, 294803, 304813, 312527, 315037, 335743, 379433, 392593, 393713
Offset: 1
Examples
30*2-1=59, 30*2+1=61; 36*2-1=71, 36*2+1=73; 30*5-1=149, 30*5+1=151; 36*5-1=179, 36*5+1=181; ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
Programs
-
Magma
[p: p in PrimesUpTo(1000000)| IsPrime(30*p-1) and IsPrime(30*p+1) and IsPrime(36*p-1) and IsPrime(36*p+1)]; // Vincenzo Librandi, Nov 24 2010
-
Mathematica
a=30;b=36;Select[Prime[Range[14^4]],PrimeQ[a*#-1]&&PrimeQ[a*#+1]&&PrimeQ[b*#-1]&&PrimeQ[b*#+1]&] Select[Prime[Range[35000]],AllTrue[Flatten[{30#+{1,-1},36#+{1,-1}}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 20 2015 *)
Extensions
More terms from Vincenzo Librandi, Apr 01 2010