A213591
G.f. A(x) satisfies A( x - A(x)^2 ) = x.
Original entry on oeis.org
1, 1, 4, 24, 178, 1512, 14152, 142705, 1528212, 17211564, 202460400, 2474708496, 31310415376, 408815254832, 5495451727376, 75907303147652, 1075685334980240, 15618612118252960, 232102241507321384, 3526880759915999016, 54755450619399484512, 867928449982022915984
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
where A(x) = x + A(A(x))^2:
A(A(x)) = x + 2*x^2 + 10*x^3 + 69*x^4 + 568*x^5 + 5250*x^6 + 52792*x^7 +...
A(A(x))^2 = x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
The g.f. satisfies the series:
A(x) = x + A(x)^2 + d/dx A(x)^4/2! + d^2/dx^2 A(x)^6/3! + d^3/dx^3 A(x)^8/4! +...
Logarithmic series:
log(A(x)/x) = A(x)^2/x + [d/dx A(x)^4/x]/2! + [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! +...
Also, A(x) = x*G(A(x)^2/x) where G(x) = x/A(x/G(x)^2) is the g.f. of A212411:
G(x) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 235*x^5 + 1792*x^6 + 15261*x^7 +...
Also, A(x)^2 = x*F(A(x)) where F(x) is the g.f. of A213628:
F(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 616*x^6 + 5072*x^7 + 46013*x^8 +...
-
terms = 22; A[] = 0; Do[A[x] = x + A[A[x]]^2 + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jan 09 2018 *)
-
{a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^2+x*O(x^n))); polcoeff(A, n))}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(2*m)/x)/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=1,21,print1(a(n),", "))
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 2*j)));
a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025
A139702
G.f. satisfies: x = A( x + A(x)^2 ).
Original entry on oeis.org
1, -1, 4, -24, 178, -1512, 14152, -142705, 1528212, -17211564, 202460400, -2474708496, 31310415376, -408815254832, 5495451727376, -75907303147652, 1075685334980240, -15618612118252960, 232102241507321384, -3526880759915999016
Offset: 1
G.f.: A(x) = x - x^2 + 4*x^3 - 24*x^4 + 178*x^5 - 1512*x^6 +-...
A(x)^2 = x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 - 3572*x^7 +-...
where A(x + A(x)^2) = x.
Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then:
G(x) = x + x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+... and
G(G(x)) = x + 2*x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+...
so that G(x) = G(G(x)) - x^2 = g.f. of A138740.
Logarithmic series:
log(A(x)/x) = -A(x)^2/x + [d/dx A(x)^4/x]/2! - [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! -+...
-
nmax = 20; sol = {a[1] -> 1}; nmin = Length[sol]+1;
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[x - A[x + A[x]^2] + O[x]^(n+1), x][[nmin;;]] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, nmin, nmax}];
a /@ Range[nmax] /. sol (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=x); if(n<1, 0, for(i=1,n, A=serreverse(x + (A+x*O(x^n))^2)); polcoeff(A, n))}
-
/* n-th Derivative: */
{Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D}
/* G.f.: [Paul D. Hanna, Dec 18 2010] */
{a(n)=local(A=x-x^2+x*O(x^n));for(i=1,n,
A=x*exp(sum(m=0,n,(-1)^(m+1)*Dx(m,A^(2*m+2)/x)/(m+1)!)+x*O(x^n)));polcoeff(A,n)}
A138739
G.f. A(x) satisfies: A(A(x)) = 3*A(x) - 2*x - x^2 with A(0)=0.
Original entry on oeis.org
1, 1, 2, 11, 88, 888, 10572, 143214, 2159154, 35702442, 640873656, 12394383780, 256762580460, 5671209169168, 133041670286160, 3304034094162183, 86616702087692256, 2390831825522972392, 69323685702986714272, 2107073248164657741448, 67003070810599639419680, 2225053954972969636237280, 77034579373254666948386880, 2776183496539544726567249520
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 11*x^4 + 88*x^5 + 888*x^6 + 10572*x^7 + 143214*x^8 + 2159154*x^9 + 35702442*x^10 + 640873656*x^11 + 12394383780*x^12 + 256762580460*x^13 + 5671209169168*x^14 + 133041670286160*x^15 +...
A(A(x)) = x + 2*x^2 + 6*x^3 + 33*x^4 + 264*x^5 + 2664*x^6 + 31716*x^7 + 429642*x^8 + 6477462*x^9 + 107107326*x^10 + 1922620968*x^11 + 37183151340*x^12 + 770287741380*x^13 + 17013627507504*x^14 + 399125010858480*x^15 +...
so that A(A(x)) + 2*x + x^2 = 3*A(x).
Self-compositions of A=A(x) may be expressed in terms of A and x:
A(A(x)) = 3*A - 2*x - x^2 ;
A(A(A(x))) = (7*A - A^2) - 6*x - 3*x^2 ;
A(A(A(A(x)))) = (15*A - 12*A^2) + (-14 + 12*A)*x +
(-11 + 6*A)*x^2 - 4*x^3 - x^4 ;
A(A(A(A(A(x))))) = (31*A - 83*A^2 + 14*A^3 - A^4) +
(-12*A^2 + 120*A - 30)*x + (-6*A^2 + 60*A - 63)*x^2 - 48*x^3 - 12*x^4 .
-
{a(n)=local(A=x+x^2);if(n<1,0, for(i=3,n+1,A=A+polcoeff(subst(A,x,A+x*O(x^i)),i)*x^i);polcoeff(A,n))}
for(n=1,20,print1(a(n),", "))
A276370
G.f. A(x) satisfies: A( x - A(x) ) = x^2.
Original entry on oeis.org
1, 2, 9, 56, 420, 3572, 33328, 334354, 3559310, 39838760, 465743720, 5658983108, 71191948512, 924554859776, 12365546196641, 169995491295312, 2398380272232272, 34680290150700800, 513390937937217088, 7773229533145403728, 120277760289804227632, 1900583166564027019136, 30649888151334972466392, 504153517331248726221392, 8454018409655883681321232, 144451967918022160558965408
Offset: 2
G.f.: A(x) = x^2 + 2*x^3 + 9*x^4 + 56*x^5 + 420*x^6 + 3572*x^7 + 33328*x^8 + 334354*x^9 + 3559310*x^10 + 39838760*x^11 + 465743720*x^12 +...
such that A( x - A(x) ) = x^2.
-
{a(n) = local(A=x^2); for(i=1, n, A = serreverse(x - A +x*O(x^n))^2); polcoeff(A, n)}
for(n=2,30,print1(a(n),", "))
-
{Dx(n, F) = local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = local(A=x^2 +x*O(x^n)); for(i=1, n, A = (x + sum(m=1, n, Dx(m-1, A^m)/m!) +x*O(x^n))^2); polcoeff(A, n)}
for(n=2,30,print1(a(n),", "))
A186262
Expansion of 3F2( 2, 1/2, 3/2; 3, 4;16 x).
Original entry on oeis.org
1, 2, 9, 56, 420, 3564, 33033, 327184, 3413124, 37119160, 417733316, 4837527072, 57397642640, 695394516600, 8579210711625, 107541060458400, 1367139314643300, 17599273282621800, 229116465142280100, 3013124257920348000, 39991185556010816400
Offset: 0
-
CoefficientList[Series[HypergeometricPFQ[{2, 1/2, 3/2}, {3, 4}, 16*x], {x, 0, 20}], x]
Table[Binomial[2*n,n]*Binomial[2*n+2,n]/Binomial[n+3,3],{n,0,20}] (* Vaclav Kotesovec, Oct 28 2012 *)
A191557
G.f. satisfies: A(A(x))^2 = x^2 + 4*A(x)^3.
Original entry on oeis.org
1, 1, 1, -1, -5, 6, 57, -68, -996, 1151, 23487, -26316, -703858, 769268, 25912425, -27791388, -1146924362, 1212941187, 60112150656, -62911402588, -3686975047595, 3828485422340, 262043300715095, -270475215554448, -21394371719691000
Offset: 1
G.f.: A(x) = x + x^2 + x^3 - x^4 - 5*x^5 + 6*x^6 + 57*x^7 - 68*x^8 +...
Note that x^3 is the only odd power of x in A(x)^2:
A(x)^2 = x^2 + 2*x^3 + 3*x^4 - 11*x^6 + 117*x^8 - 2001*x^10 +...
Illustrate A(A(x))^2 = x^2 + 4*A(x)^3 by the expansions:
A(A(x))^2 = x^2 + 4*x^3 + 12*x^4 + 24*x^5 + 16*x^6 - 60*x^7 - 72*x^8 + 640*x^9 + 768*x^10 - 11160*x^11 - 12916*x^12 +...
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 4*x^6 - 15*x^7 - 18*x^8 + 160*x^9 + 192*x^10 - 2790*x^11 - 3229*x^12 +...
G.f. of odd bisection B(x) = (A(x) - A(-x))/2 begins:
B(x) = x + x^3 - 5*x^5 + 57*x^7 - 996*x^9 + 23487*x^11 +...
where A(x) = B(x) + x^3/B(x).
-
{a(n)=local(A=x+x^2+x*O(x^n));for(i=1,n,A=A-(subst(A,x,A)-x*sqrt(1+4*A^3/x^2))/2);polcoeff(A,n)}
A191565
G.f. satisfies: A(A(x))^2 = A(x)^2 + 4*x^3.
Original entry on oeis.org
1, 2, -14, 184, -3194, 65472, -1503924, 37593664, -1004163802, 28314667072, -835650200380, 25652840146624, -815280469973380, 26728163562423360, -901336722528156712, 31194183364269262848, -1105930698812430437626
Offset: 1
G.f.: A(x) = x + 2*x^2 - 14*x^3 + 184*x^4 - 3194*x^5 + 65472*x^6 +...
Illustrate A(A(x))^2 - A(x)^2 = 4*x^3 with the expansions:
A(x)^2 = x^2 + 4*x^3 - 24*x^4 + 312*x^5 - 5456*x^6 + 113016*x^7 +...
A(A(x))^2 = x^2 + 8*x^3 - 24*x^4 + 312*x^5 - 5456*x^6 + 113016*x^7 +...
A(A(x)) = x + 4*x^2 - 20*x^3 + 236*x^4 - 3872*x^5 + 76716*x^6 - 1723488*x^7 +...
Let R(x) be the series reversion of A(x):
R(x) = x - 2*x^2 + 22*x^3 - 364*x^4 + 7390*x^5 - 170556*x^6 +...
R(x)^3 = x^3 - 6*x^4 + 78*x^5 - 1364*x^6 + 28254*x^7 - 655668*x^8 +...
where A(x)^2 = x^2 + 4*R(x)^3.
-
{a(n)=local(A=x+x^2+x*O(x^n));for(i=1,n,A=A-(subst(A,x,A)-x*sqrt(4*x+A^2/x^2)));polcoeff(A,n)}
A292809
G.f. A(x) satisfies: A( 2*x - A(x) ) = 2*x - A(x) + x^2.
Original entry on oeis.org
1, 1, 2, 9, 56, 420, 3572, 33328, 334354, 3559310, 39838760, 465743720, 5658983108, 71191948512, 924554859776, 12365546196641, 169995491295312, 2398380272232272, 34680290150700800, 513390937937217088, 7773229533145403728, 120277760289804227632, 1900583166564027019136, 30649888151334972466392, 504153517331248726221392, 8454018409655883681321232, 144451967918022160558965408, 2513925490162481746629200624, 44542176917098830784415314624
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 9*x^4 + 56*x^5 + 420*x^6 + 3572*x^7 + 33328*x^8 + 334354*x^9 + 3559310*x^10 + 39838760*x^11 + 465743720*x^12 + 5658983108*x^13 + 71191948512*x^14 + 924554859776*x^15 + 12365546196641*x^16 +...
such that A( 2*x - A(x) ) = 2*x - A(x) + x^2.
-
{a(n) = my(A=x, V=[1, 1]); for(i=1, n, V = concat(V, 0); A=x*Ser(V); V[#V] = Vec( subst(G=A, x, 2*x - A) )[#V]/(-1) ); V[n]}
for(n=1,30,print1(a(n),", "))
A139715
G.f. A(x) satisfies: A(x) = G(G(x)) where G(x) = x - A(x)^2 = g.f. of A139702.
Original entry on oeis.org
1, -2, 10, -69, 568, -5250, 52792, -566830, 6420640, -76095972, 938077528, -11975951312, 157808048792, -2140767942096, 29835756120952, -426490803168368, 6244476409802008, -93541594534237356, 1432261132629484052, -22397290780155132728
Offset: 1
A(x) = x - 2*x^2 + 10*x^3 - 69*x^4 + 568*x^5 - 5250*x^6 + 52792*x^7 -+...
Let G(x) = x - A(x)^2 = g.f. of A139702:
G(x) = x - x^2 + 4*x^3 - 24*x^4 + 178*x^5 - 1512*x^6 + 14152*x^7 -+...
then A(x) = G(G(x)).
-
{a(n)=local(A=x); if(n<1, 0, for(i=1,n, A=serreverse(x + (A+x*O(x^n))^2)); polcoeff(subst(A,x,A+x*O(x^n)), n))}
Showing 1-9 of 9 results.
Comments