cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A138787 First differences of A007878.

Original entry on oeis.org

1, 3, 11, 43, 187, 857, 4144, 20812, 107822, 572918, 3108512, 17164308, 96199106, 546137465, 3135381256, 18177991951
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Crossrefs

Formula

a(n) = A007878(n+1)-A007878(n).

Extensions

a(9)-a(11) from Vaclav Kotesovec, Mar 29 2019
a(12)-a(13) from Seiichi Manyama, Nov 08 2023
a(14)-a(16) from the data at A007878 added by Amiram Eldar, Oct 24 2024

A138800 Number of monomials in discriminant of polynomial x^n + a_{n-2} x^{n-2} + ... + a_0.

Original entry on oeis.org

1, 1, 2, 6, 19, 76, 320, 1469, 7048, 35233, 181656, 960800, 5189579
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Examples

			a(4)=6 because discriminant of quartic x^4+a*x^2+b*x+c is -4*a^3*b^2 - 27*b^4 + 16*a^4*c + 144*a*b^2*c - 128*a^2*c^2 + 256*c^3 that consists of 6 monomials (parts).
		

Crossrefs

Programs

  • Maple
    1, 1, seq(nops(expand(discrim(x^n + add(c[i]*x^i,i=0..n-2),x))),n=3..12); # Robert Israel, Aug 10 2015
  • Mathematica
    ClearAll[f]; a = {1,1}; Do[k = 0; Do[If[n > s - 2, If[n > s - 1, k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 3, 8}]; a (* fixed by Vaclav Kotesovec, Mar 20 2019 *)
    Flatten[{1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-2}], x]], {n, 3, 8}]}] (* Vaclav Kotesovec, Mar 20 2019 *)

Extensions

a(2) and Mathematica program corrected [previously had erroneous a(2)=2 because of Length syntax in Mathematica] by Alan Sokal and Andrea Sportiello (sokal(AT)nyu.edu), Jun 17 2010
a(9) to a(12) from Robert Israel, Aug 10 2015
a(13) from Vaclav Kotesovec, Mar 28 2019

A138801 Number of monomials in discriminant of symbolic principal (with two zeros coefficients by x^(n-1) and x^(n-2)) polynomial n degree.

Original entry on oeis.org

1, 1, 2, 2, 6, 23, 92, 409, 1916, 9346, 47182, 244865, 1300086
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Examples

			a(5)=6 because discriminant of quintic x^5+a*x^2+b*x+c is: -27*a^4*b^2 + 256*b^5 + 108*a^5*c - 1600*a*b^3*c + 2250*a^2*b*c^2 + 3125*c^4 that consists of 6 monomials (parts).
		

Crossrefs

Programs

  • Mathematica
    a = {1, 1}; Do[k = 0; Do[If[n > s - 3, If[(n > s - 1) && ((n > s - 2)), k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 3, 9}]; a (* fixed by Vaclav Kotesovec, Mar 20 2019 *)
    Flatten[{1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-3}], x]], {n, 3, 9}]}] (* Vaclav Kotesovec, Mar 20 2019 *)

Extensions

a(10)-a(12) from Vaclav Kotesovec, Mar 21 2019
a(13) from Vaclav Kotesovec, Mar 28 2019

A138802 Number of monomials in discriminant of symbolic Tschirnhausen polynomial of degree n (with three zero coefficients at x^(n-1), x^(n-2) and x^(n-3)).

Original entry on oeis.org

1, 1, 1, 2, 2, 7, 26, 115, 521, 2502, 12389, 63236, 330455, 1762852
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Examples

			a(5)=7 because discriminant of sextic x^6+a*x^2+b*x+c is -27*a^4*b^2 + 256*b^5 + 108*a^5*c - 1600*a*b^3*c + 2250*a^2*b*c^2 + 3125*c^4 that consists of 6 monomials (parts).
		

Crossrefs

Programs

  • Mathematica
    a = {1, 1, 1}; Do[k = 0; Do[If[n > s - 4, If[(n > s - 1) && (n > s - 2) && (n > s - 3), k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 4, 10}]; a (* Artur Jasinski, fixed by Vaclav Kotesovec, Mar 20 2019 *)
    Flatten[{1, 1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-4}], x]], {n, 4, 10}]}] (* Vaclav Kotesovec, Mar 20 2019 *)

Extensions

a(11)-a(13) from Vaclav Kotesovec, Mar 21 2019
a(14) from Vaclav Kotesovec, Mar 28 2019
Showing 1-4 of 4 results.