cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A138843 Concatenation of initial and final digits of n-th perfect number.

Original entry on oeis.org

66, 28, 46, 88, 36, 86, 18, 28, 26, 16, 18, 18, 26, 18, 58, 18, 96, 36, 16, 48, 16, 56, 36, 96, 16, 86, 36, 18, 18, 16, 28, 18, 86, 88, 36, 16, 86, 96, 46
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

Also, concatenation of A135617(n) and A094540(n).

Examples

			a(5)=36 because the 5th perfect number A000396(5) is 33550336 and the concatenation of initial and final digits of 33550336 is 36.
		

Crossrefs

A138840 Concatenation of initial and final digits of n-th prime.

Original entry on oeis.org

22, 33, 55, 77, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 11, 13, 17, 19, 13, 17, 11, 17, 19, 19, 11, 17, 13, 17, 13, 19, 11, 11, 13, 17, 19, 21, 23, 27, 29, 23, 29, 21, 21, 27, 23, 29, 21, 27, 21, 23, 23, 37, 31, 33, 37, 31, 37, 37
Offset: 1

Views

Author

Omar E. Pol, Apr 01 2008

Keywords

Comments

There are only 38 distinct terms in this sequence, all of them odd with the exception of 22. 55 is the only term divisible by 5. 22 and 55 each appear only once. The other terms, each of which appears multiple times, are the odd two-digit numbers not divisible by 5. - Harvey P. Dale, May 15 2012
a(n) is the concatenation of A077648(n) and A007652(n), hence all terms of this sequence have two digits in the same way as A073729. - Omar E. Pol, Mar 23 2018

Crossrefs

Cf. A137589 (same except for first four terms).

Programs

  • Maple
    a:= n-> (p-> parse(cat(p[1], p[-1])))(""||(ithprime(n))):
    seq(a(n), n=1..92);  # Alois P. Heinz, Nov 23 2023
  • Mathematica
    cifd[n_]:=Module[{il=IntegerLength[n],idn=IntegerDigits[n]},Which[ il==1, 10n+n, il==2,n,il>2,FromDigits[Join[{First[idn],Last[idn]}]]]]; cifd/@ Prime[ Range[70]] (* Harvey P. Dale, May 15 2012 *)
  • PARI
    a(n) = my(d=digits(prime(n))); fromdigits(concat(d[1], d[#d])); \\ Michel Marcus, Mar 23 2018

A138842 Concatenation of initial and final digits of n-th even superperfect number A061652(n).

Original entry on oeis.org

22, 44, 16, 64, 46, 66, 24, 14, 16, 36, 84, 84, 36, 24, 54, 74, 26, 16, 96, 14, 26, 16, 16, 26, 26, 26, 46, 24, 24, 26, 34, 84, 66, 24, 46, 36, 66, 26, 46, 64, 14, 64, 16, 66, 14, 86, 16
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

Also, concatenation of initial and final digits of n-th superperfect number A019279(n), if there are no odd superperfect numbers.
Also, concatenation of A138124(n) and A138125(n).

Crossrefs

Extensions

More terms from Jinyuan Wang, Mar 14 2020

A138866 Concatenation of first 3 digits and last 3 digits of n-th Mersenne prime A000668(n).

Original entry on oeis.org

33, 77, 3131, 127127, 819191, 131071, 524287, 214647, 230951, 618111, 162127, 170727, 686151, 531127, 104087, 147007, 446351, 259071, 190991, 285607, 478111, 346551, 281191, 431471, 448751, 402511, 854671, 536207, 521007, 512311, 746447, 174887, 129591, 412527, 814711, 623151, 127271, 437791, 924071, 125047, 299407, 122247, 315871, 124871, 202927, 169751, 316511
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{33,77,3131},FromDigits[Flatten[Join[{Take[IntegerDigits[#],3],Take[ IntegerDigits[ #],-3]}]]]&/@ (2^MersennePrimeExponent[Range[4,40]]-1)] (* Harvey P. Dale, Dec 30 2023 *)

Extensions

More terms from Harvey P. Dale, Dec 30 2023

A138818 Concatenation of initial digit of n-th even superperfect number A061652(n), initial digit of n-th Mersenne prime A000668(n) and initial digit of n-th perfect number A000396(n).

Original entry on oeis.org

236, 472, 134, 618, 483, 618, 251, 122, 122, 361, 811, 811
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2008

Keywords

Comments

Also, concatenation of initial digit of n-th superperfect number A019279(n), initial digit of n-th Mersenne prime A000668(n) and initial digit of n-th perfect number A000396(n), if there are no odd superperfect numbers.
Also, concatenation of A138124(n), A135613(n) and A135617(n).

Crossrefs

A138819 Concatenation of final digit of n-th even superperfect number A061652(n), final digit of n-th Mersenne prime A000668(n) and final digit of n-th perfect number A000396(n).

Original entry on oeis.org

236, 478, 616, 478, 616, 616, 478, 478, 616, 616, 478, 478, 616, 478, 478, 478, 616, 616, 616, 478, 616, 616, 616, 616, 616, 616, 616, 478, 478, 616, 478, 478, 616, 478, 616, 616, 616, 616, 616
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2008

Keywords

Comments

Also, concatenation of final digit of n-th superperfect number A019279(n), final digit of n-th Mersenne prime A000668(n) and final digit of n-th perfect number A000396(n), if there are no odd superperfect numbers.
Also, concatenation of A138125(n), A080172(n) and A094540(n).
For n>1 a(n) is equal to 478 or 616, only.
Note that, for n>1: if the final digit of n-th Mersenne prime A000668(n) is 1 then the final digit of n-th even superperfect number is 6 and the final digit of n-th perfect number also is 6, otherwise the final digit of n-th even superperfect number is 4 and the final digit of n-th perfect number is 8 (see example).

Examples

			===================================================================
.................. SHORT TABLE OF FINAL DIGITS ...................
===================================================================
... Final digit of even ..... Final digit of ..... Final digit of
... superperfect number ..... Mersenne prime ..... perfect number
........ A061652 ............... A000668 ............. A000396
===================================================================
n = 1 ..... (2) ................... (3) .................. (6)
n > 1 ..... (4) ................... (7) .................. (8)
n > 1 ..... (6) ................... (1) .................. (6)
		

Crossrefs

A138844 Concatenation of initial and final digits of n-th positive Fibonacci number.

Original entry on oeis.org

11, 11, 22, 33, 55, 88, 13, 21, 34, 55, 89, 14, 23, 37, 60, 97, 17, 24, 41, 65, 16, 11, 27, 48, 75, 13, 18, 31, 59, 80, 19, 29, 38, 57, 95, 12, 27, 39, 66, 15, 11, 26, 47, 73, 10, 13, 23, 46, 79, 15, 24, 39, 53, 82, 15, 27, 32, 59, 91, 10, 21, 41, 62, 13, 15, 28, 43, 71, 14
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

Also, concatenation of A008963(n) and A003893(n).

Examples

			a(15) = 60 because the 15th positive Fibonacci number is 610 and the concatenation of initial and final digits of 610 is 60.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> parse(cat(f[1], f[-1])))(""||(combinat[fibonacci](n))):
    seq(a(n), n=1..92);  # Alois P. Heinz, Nov 23 2023
  • Mathematica
    FromDigits[Join[{IntegerDigits[#][[1]]},{IntegerDigits[#][[-1]]}]]&/@ Fibonacci[Range[70]] (* Harvey P. Dale, Jun 15 2018 *)

A138863 Concatenation of first two digits and last two digits of n-th Mersenne prime A000668(n).

Original entry on oeis.org

33, 77, 3131, 1227, 8191, 1371, 5287, 2147, 2351, 6111, 1627, 1727, 6851, 5327, 1087, 1407, 4451, 2571, 1991, 2807, 4711, 3451, 2891, 4371, 4451, 4011, 8571, 5307, 5207, 5111, 7447, 1787, 1291, 4127, 8111, 6251, 1271, 4391, 9271, 1247, 2907, 1247, 3171, 1271, 2027, 1651, 3111
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Crossrefs

Extensions

More terms from Jinyuan Wang, Mar 14 2020
Showing 1-8 of 8 results.