cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138910 Inverse binomial transform of A138909.

Original entry on oeis.org

1, 1, 3, 20, 129, 1164, 12265, 151458, 2136337, 33901640, 597761361, 11593851510, 245310524041, 5622982528188, 138803996674057, 3671135646515834, 103568483199034785, 3104443346427521808, 98528857134710517793
Offset: 0

Views

Author

Paul D. Hanna, Apr 05 2008

Keywords

Crossrefs

Cf. A138909.

Programs

  • Mathematica
    Range[0,19]! CoefficientList[Series[(x + 1) / (Exp[x] - x Exp[2 x]), {x, 0, 19}], x] (* Vincenzo Librandi, Nov 07 2016 *)
  • PARI
    {a(n)=local(A=[1]);for(k=1,n,A=concat(A,0); A[k+1]=k!-polcoeff(subst(Ser(A),x,x/(1+(k-1)*x+x*O(x^k)))/(1+(k-1)*x),k));A[n+1]}

Formula

O.g.f. satisfies: [x^n] A( x/(1+(n-1)*x) )/(1+(n-1)*x) = n! for n>=0.
E.g.f. satisfies: [x^n] A(x)*exp(-(n-1)*x) = 1 for n>=0.
E.g.f.: (x+1)/(exp(x)-x*exp(2*x)). - Vladimir Kruchinin, Nov 07 2016
a(n) ~ n! / LambertW(1)^(n-1). - Vaclav Kotesovec, Oct 30 2017