cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139098 a(n) = 8*n^2.

Original entry on oeis.org

0, 8, 32, 72, 128, 200, 288, 392, 512, 648, 800, 968, 1152, 1352, 1568, 1800, 2048, 2312, 2592, 2888, 3200, 3528, 3872, 4232, 4608, 5000, 5408, 5832, 6272, 6728, 7200, 7688, 8192, 8712, 9248, 9800, 10368, 10952, 11552, 12168, 12800, 13448, 14112, 14792, 15488, 16200
Offset: 0

Views

Author

Omar E. Pol, Apr 25 2008

Keywords

Comments

Opposite numbers to the centered 16-gonal numbers (A069129) in the square spiral whose vertices are the triangular numbers (A000217).
8 times the squares. - Omar E. Pol, Dec 09 2008
a(n-1) is the molecular topological index of the n-wheel graph W_n. - Eric W. Weisstein, Jul 11 2011
An n X n pandiagonal magic square has a(n) orientations. - Kausthub Gudipati, Sep 15 2011
Area of a square with diagonal 4n. - Wesley Ivan Hurt, Jun 19 2014
Sum of all the parts in the partitions of 4n into exactly two parts. - Wesley Ivan Hurt, Jul 23 2014
Equivalently: integers k such that k$ / (k/2-1)! and k$ / (k/2)! are both squares when A000178 (k) = k$ = 1!*2!*...*k! is the superfactorial of k (see A348692 for further information). - Bernard Schott, Dec 02 2021

Crossrefs

Programs

Formula

a(n) = 8*A000290(n) = 4*A001105(n) = 2*A016742(n). - Omar E. Pol, Dec 13 2008
G.f.: -8*x*(1+x)/(x-1)^3. - R. J. Mathar, Nov 27 2015
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/48 (A245058).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/96.
Product_{n>=1} (1 + 1/a(n)) = sqrt(8)*sinh(Pi/sqrt(8))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(8)*sin(Pi/sqrt(8))/Pi. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Dec 03 2021
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 8*x*(1 + x)*exp(x).
a(n) = n*A008590(n) = A001105(2*n). (End)