A139098 a(n) = 8*n^2.
0, 8, 32, 72, 128, 200, 288, 392, 512, 648, 800, 968, 1152, 1352, 1568, 1800, 2048, 2312, 2592, 2888, 3200, 3528, 3872, 4232, 4608, 5000, 5408, 5832, 6272, 6728, 7200, 7688, 8192, 8712, 9248, 9800, 10368, 10952, 11552, 12168, 12800, 13448, 14112, 14792, 15488, 16200
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Eric Weisstein's World of Mathematics, Molecular Topological Index.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[8*n^2: n in [0..50]]; // Vincenzo Librandi, Apr 26 2011
-
Maple
A139098:=n->8*n^2; seq(A139098(n), n=0..50); # Wesley Ivan Hurt, Jun 19 2014
-
Mathematica
8 Range[0, 50]^2 (* Wesley Ivan Hurt, Jun 19 2014 *) LinearRecurrence[{3,-3,1},{0,8,32},50] (* Harvey P. Dale, Oct 05 2023 *)
-
PARI
a(n)=8*n^2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: -8*x*(1+x)/(x-1)^3. - R. J. Mathar, Nov 27 2015
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/48 (A245058).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/96.
Product_{n>=1} (1 + 1/a(n)) = sqrt(8)*sinh(Pi/sqrt(8))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(8)*sin(Pi/sqrt(8))/Pi. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Dec 03 2021
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 8*x*(1 + x)*exp(x).
Comments